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Abstract
In the present study, green synthesized zinc sulfide nanoparticles (ZnS NPs) from the leaves of the medicinal plant, Abrus
precatorius, were characterized and tested for toxicity using Eudrilus eugeniae. The formation of ZnS NPs through green
synthesis was confirmed by using UV-Vis spectroscopy, FE-SEM, FT-IR, and XRD analyses. The clitellate earthworms were
used to assess the effect of ZnS NPs by exposing to ZnS NPs 300 mg ZnS NPs per kg of OECD soil. On 0, 7, and 14 days of
exposures, the coelomic fluid of the earthworms were separated and analyzed for total protein and protein profile, activities of
enzymemarkers such as superoxide dismutase (SOD), catalase (CAT), and protease. The results on the analysis of coelomic fluid
of E. eugeniae after exposure to ZnS NPs showed a significant increase in protein content from the initial levels of 1.51 to 2.32
mg/mL with a protein profile of 25–40 kDa size. The activity of SOD was significantly (P < 0.05) declined from initial levels
whereas CATand protease showed a significant (P< 0.05) increase on 7th day of exposure then declined. The results indicate that
the ZnS NPs in OECD soil significantly interfere with the protein and enzyme markers, SOD, CAT, and protease in earthworm
coelomic fluid.
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1 Introduction

Metal nanoparticles (NPs) are well-established for their bio-
logical and pharmacological activities [1–4]. Among the metal

nanoparticles, the synthesis and application of zinc sulfide
NPs (ZnS NPs) are rapidly increasing because of their multi-
faceted applications such as field emitters, field-effect transis-
tors (FETs), p-type conductors, catalyzators, UV-light sensors,
chemical sensors (including gas sensors), biosensors,
nanogenerators, and pharmaceutical and cosmetic industries
[5, 6]. The Zn NPs are found to possess a modulator effect on
plant growth [7]. Importantly, the application of ZnS NPs in
the field of medicine is widening fast, due to its promising
results. For instance, ZnS NPs synthesized from Phoenix
dactylifera showed antioxidant, cytotoxic, and antileishmanial
activities [8]. The green synthesis of emerging NPs from plant
resources is an advanced phytonanotechnology [9, 10]. The
green synthesis of ZnS NPs is a cost-effective eco-friendly
method for the production of ZnS NPs with a range of biolog-
ical properties including anticancer, antibacterial, and antifun-
gal activities [11–13]. The biosynthesis of ZnS NPs using
plant extracts is emerging nanoscience field, and the recent
studies expose green synthesis, characterization, and applica-
tion of ZnS NPs. The ZnS NPs synthesized from flower bud
extract of Syzygium aromaticum and from the leaf extracts of
Tridax procumbens showed good antimicrobial activity [14,
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15]. Abrus precatorius L. (rosary pea) is an important medic-
inal plant possessing various ethnobotanical and pharmaco-
logical activities in roots, leaves, and seeds [16]. The efficacy
of petroleum ether extract of the leaves of A. precatorius
against Culex quinquefasciatus larvae showed a LC50 value
of 359.02 ppm [17]. The biosynthesized silver (Ag) NPs from
the leaves of A. precatorius has been shown to possess anti-
microbial activity against Gram-positive and Gram-negative
bacteria [18]. A recent study revealed that the leaf extract of
A. precatorius is owned cytotoxic, antimicrobial, and anti-
diabetic activities [19]. However, the synthesis of ZnS NPs
from Abrus precatorius leaves is narrowly studied.

Earthworms are natural engineers of the soil and largely
employed for vermicompost production and commonly used
test organisms for toxicity studies [20, 21]. The environmental
impact of NPs using animal models is gaining momentum as
the toxicity levels of synthesized NPs for their environment-
friendly exploitation. Invertebrate organisms are used to study
the environmental effects of nanomaterials; modeling and
route of bioaccumulation of such materials are well represent-
ed [22]. The zinc-derived NPs, ZnO NPs had been assessed
for toxicity in earthworms [23, 24]. The green synthesis of
ZnS NPs from the leaf extracts of A. precatorius and their
toxicity to soil organisms like earthworms is least studied.
The coelomocytes in earthworms are found to be more sensi-
tive than gut cells to NP toxicity [25]. Antioxidant enzymes,
including SOD, CAT, and protease activity, are used as poten-
tial biomarkers to assess the ecotoxicological effects of NPs
on earthworms and the revelation of NPs induced oxidative
stress, and also to get insight that the earthworms could be
used as important bioindicator organisms for monitoring
chemical toxicity in the soil ecosystem. Hence, the present
study was aimed to find out the effect of green synthesized
ZnS NPs from A. precatorius leaves on protein profile, activ-
ities of super oxide dismutase (SOD), CATand protease in the
coelomic fluid of the earthworm, Eudrilus eugeniae by soil
contamination.

2 Materials and Methods

2.1 Green Synthesis of ZnS NPs and Characterization

The leaves of A. precatorius were collected from Tirupattur,
Sivagangai District, Tamil Nadu, India (GPS co-ordinates:
latitude 10° 11′ 25.50″ N; longitude 78° 59′ 94.00″ E). For
the preparation of plant extract, 5 g of fresh leaves was washed
with running tap water followed byMilli-Q water and then cut
and soaked in a 250-mL Erlenmeyer flask containing 100 mL
Milli-Q. The solution was boiled at 70 °C for 8 min. The leaf
extract was allowed to cool to room temperature, filtered
throughWhatman no. 1 filter paper, and the filtrate was stored
for further experimental use. For the green synthesis of ZnS

NPs, 0.1 mole of 5.750 g zinc sulfate was dissolved into 100
mL of distilled water and stirred vigorously using magnetic
stirrer for 20min. Precipitation was achieved by adding 20mL
plant extract, drop by drop, under vigorous stirring. The pre-
cipitation process was continued until obtaining light brown
color precipitate, and then centrifuged at 2000 rpm for 15 min.
The precipitate was dried and calcinated at 500 °C for 3 h. A
light brown precipitate resulted was then dried at 60 °C over-
night. Precipitation was observed by increasing the pH to 14.
The ZnS NPs formed were preserved for further studies. The
physicochemical properties of resulting ZnS NPs were sub-
jected to UV-Vis spectroscopic analysis, XRD, FT-IR, and
FE-SEM examinations. The optical property of ZnS NPs
was determined by the result of UV-Vis Spectrophotometer
(Systronics Double Beam Spectrophotometer-2205,
Haryana, India). After the addition of zinc sulfate to extract,
the spectra were taken in time intervals up to 3 h between 200
and 600 nm. The supernatant ratios of 30:1 and 120:1 were
collected and dried at 75 °C and the dried powder was taken
for FTIR analysis. FTIR was obtained in the range 4000–400
cm−1 using KBR pellet method in Thermo Nicolet 380 FTIR
spectrophotometer. The SEM slide was prepared by making a
smear on a slide. Then, the slide was set for FE-SEM analysis
after coating the slide with platinum and the FE-SEM image
was taken in FE-SEM with EDAX, Quanta FEG 250. ZnS
NPs were examined by X-ray diffractometer. For this, the
powdered ZnS NPs were cohered to the cubes of XRD and
the final output was taken in the XRD equipment (Powder X-
Ray Diffractometer, X’ Pert Pro–PAnalytical, USA), at uni-
versity instrumentation center (USIC) Alagappa university
with the scan rate of 0.1 s.

2.2 Experimental Animals and Vermibed Preparation

The earthworm, E. eugeniae, for the present study was pro-
cured from Vermiculture Unit, Alagappa University,
Karaikudi. The earthworms were cultured in plastic containers
(diameter 30 cm, height 20 cm) with 5:1 ratio (w/w) of
cowdung and garden soil. The earthworms were exposed to
ZnS NPs used in this study in artificial soil as described by
OECD guidelines [26]. An artificial soil was prepared using
70% soil, 20% kaolin clay, and 10% sphagnum peat moss and
the pH was adjusted to 6.0 ± 0.5 by the addition of CaCO3.
The dry artificial soil was moistened with distilled water to
hold 60 ± 5%. All the experiments were conducted under
laboratory conditions in triplicate; the temperature maintained
was 28 ± 2 °C. The dry OECD test soil mix was contaminated
at the rate of 300 mg ZnS NPs/kg of soil by thorough mixing
to ensure a homogenous mixture. After 24 h of stabilization,
the earthworms were introduced in to the OECD soil with ZnS
NPs. For the experiments, clitellate adult earthworms were
sorted out from the culture beds and fed with tissue paper
for overnight to clean the gut. The earthworms were then
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washed with saline solution and blotted on Whatman No. 1
filter paper and used for the experiments.

2.3 Collection and Analysis of Coelomic Fluid
from Earthworms

On 0, 7, and 14 days of exposure to ZnS NPs, the earthworms
were collected from experimental soil and subjected to coelo-
mic fluid extraction. The coelomic fluid was collected using
whole body dissection method [27]. The worms were placed
on a dissection tray and their gut contents were evacuated. The
earthwormmuscles were ground with 0.1M phosphate buffer.
The samples were centrifuged for 10 min at 13×g and the
supernatant was collected and re-centrifuged for 10 min at
13×g to exclude any remaining particulates in the coelomic
fluid, followed by 5-min centrifugation at 16×g to ensure solid
free samples. Total crude coelomic fluid protein concentration
for samples collected from control and experimental organ-
isms was determined according to the Lowry’s method [28].
The protein separation was accomplished by SDS-PAGE by
using 10% SDS run at 100 V for 2 h. The gels were removed
from the plate carrier following separation and placement in a
plastic tray containing staining solution (80 mL methanol, 20
mL acetic acid, 100 mL distilled water, and 0.24 g of
Coomassie brilliant blue) for 2 h. Then, the staining solution
was discarded, and destaining solution (80 mL methanol, 20
mL acetic acid, and 100 mL distilled water) was added. The
destaining solution was changed 2–3 times until the bands get
clearly visible. The destaining solution was removed and gels
were washed with distilled water to remove any remaining
destaining solution. Then, the gel was stored in 10% acetic
acid and photographed.

2.4 Enzymatic Assays

The activity of SOD (EC 1.15.1.1) was determined by the
method described by Magwere et al. [29]. This involved mea-
suring the SOD inhibition of the auto-oxidation activity of
epinephrine at pH 10.2 and 30 °C. One unit of superoxide
activity is defined as the amount of SOD necessary to cause
50% inhibition of epinephrine auto-oxidation. The analysis
was performed in 0.02 mL of the sample and 3.0 mL of
50 M Na2CO3 buffer. This was followed by the addition of
0.03 mL of epinephrine stock solution before taking the ab-
sorbance reading at 480 nm for 3–5 min. A blank devoid of
the sample (but containing all reagents) was used for back-
ground correction. CAT (EC 1.11.1.6) activity was determined
as a degradation of H2O2 by the enzyme. The enzymatic ac-
tivity was expressed in micromoles of H2O2 produced per
minute per milligram of protein [30], and the protein content
was measured using standard bovine albumin [31]. The pro-
tease activity was measured by using skim milk agar plates
following the procedure of Cappuccino and Sherman [32]. To

the solidified skim milk agar medium in Petri plates, wells of
0.63 mm were cut and filled with 35 μL of 0-, 7-, and 14-day
samples in separate wells. The Petri dishes were then incubat-
ed for 6 h at 37 °C and the diameter of the zone of clearance
around each well was measured.

2.5 Statistical Analysis

The results on total protein and enzymatic analyses were
expressed as mean ± standard deviation (SD). The differences
in coelomic fluid enzyme activity between 0-, 7-, and 14-day
treated earthworms were statistically interpreted using
ANOVA. The statistical significance of various treatments
was assessed by one-way analysis of variance (ANOVA) with
SPSS version 18.0 (SPSS Inc., Chicago, USA). When there
was a significant difference, Tukey’s honestly significant dif-
ferent (HSD) multiple comparison tests were performed atP<
0.05 significance level. The correlation coefficient of determi-
nation (R2) was derived to know the effect of number of days
of ZnS NPs exposure on protease activity in the coelomic fluid
of earthworm, E. eugeniae.

3 Results and Discussion

3.1 Characterization of ZnS NPs

The complete conversion to ZnS NPs took place during dry-
ing and the precipitation was observed by increasing the pH to
14. The ZnS NPs were light brown in color (Fig. 1). The UV-
Visible spectra showed an absorption peak at 280 nm (after 2
h) which remained stable after 3 h of reaction (Fig. 2). It has
been reported that the UV-Visible spectra of ZnS NPs exhib-
ited a sharp absorbance of UV-Vis region at 270 nm and then
decreased due to the optical absorption of the colloidal solu-
tion of ZnS [15]. The FE-SEM analysis showed the high den-
sity of green synthesized spherical ZnS NPs, and further

Fig. 1 The powder of ZnS NPs synthesized from leaf extract of Abrus
precatorius
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confirmed the development of ZnS nanostructures. The FE-
SEM image shows (Fig. 3) that the ZnS NPs appear as discrete
particles but form much larger dendrite flocks whose size
reached micron-scale size range about 9.55 nm. FTIR mea-
surements carried out to identify the possible functional
groups responsible for the reduction of the Zn ions in green
synthesized ZnS NPs confined the formation (Fig. 4). The
FTIR spectrum of ZnS NPs showed that the peaks were found
in the range between 3000 and 500 cm−1 (Fig. 4) and bands
observed at 3565.14, 2360.62, 1622.26, 1384.36, 1119.91,
and 618.48 which were associated with amide B: N–H
stretching of proteins, PO2

− symmetric stretch: mainly nucleic
acids, COO− symmetric stretch: fatty acids and amino acids,
C–O asymmetric stretching of glycogen, carbonate, ion, and
aliphatic iodo compounds. Figure 5 shows an XRD pattern of
biosynthesized ZnS NPs. The 2theta peak position at 28.50,

35.10, 47.51, and 56.81 showed the corresponding plane of
index of (111), (200), (220), and (311), respectively. These
peaks matching with JCPDS card number (05-0566) which
shows the confirmation of cubic structure. Similar results have
been reported while synthesizing ZnS NPs from the plant,
Stevia rebaudiana [6]. All diffraction peaks in the present
study were indexed according to the cubic structure of ZnS.
No characteristic peaks of impurity phases except ZnS were
found which revealed the good crystalline nature of the sam-
ples. The broadening of the peaks in the XRD pattern can be
attributed to the small particle size of the synthesized ZnS
NPs. The present study results fall in line with the results of
Sathishkumar et al. [15] during the green synthesis of ZnS
NPs using the extracts of the plant, Syzygium aromaticum.

3.2 Effect of ZnS NPs Exposure on Earthworm
Coelomic Fluid Protein and Enzymes

The toxicity tests conducted for a period 14 days with ZnS
NPs on the earthworm E. eugeniae showed no mortality. The
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protein expression profile of coelomic fluid collected from
ZnS NPs-exposed E. eugeniae showed that the number of
proteins expressed was varied between normal and stress-
induced earthworms. The protein bands observed were in
the range of 25–40 kDa (Fig. 6a). The exposure of Zn NPs
to the earthworms showed significant increase in protein con-
tent from the initial levels of 1.51 to 2.32 mg/mL (Fig. 6b).
Further, the regression analysis showed a significant positive
correlation between coelomic fluid protein content of
E. eugeniae and number of days of exposure (y = 0.41x +
1.113, R2 = 0.990) indicating that the period of exposure of
ZnS NPs increases the total protein content in the coelomic
fluid of E. eugeniae. However, contrasting results have been
obtained by the exposure of copper sulfate and copper NPs to
the earthworm, Metaphire posthuma where the protein con-
tent showed significant decline upon exposure of experimen-
tal concentrations of copper NPs and copper sulfate per kg of
soil for 7 and 14 days [33]. This could have been attributed to
the immunological response of the earthworms to different
chemical substances including NPs in soil.

The SOD activity of 3.95, 2.48, and 2.33U/mgwas recorded,
respectively, on 0, 7, and 14th day of treatment (Fig. 7a). A

significant reduction (P < 0.05) in SOD activity was observed
in the coelomic fluid of the earthworms treated with ZnSNPs on
the 7th and 14th day after exposure in comparison with the
initial levels, i.e., before exposure (0th day). However, the dif-
ference in SOD activity between 7th and 14th day did not differ
significantly (P > 0.05). This shows that the SOD activity was
triggered after exposure to ZnSNPs and the activity was main-
tained at lower levels thereafter (14th day). The antioxidant
enzymes protect the cells from the reactive oxygen species
produced by the interference of environmental contaminants
in the metabolic processes and these enzymes can be used as
biomarkers for assessing the level of environmental contami-
nants [34]. A significant decline in SOD activity has been
reported in the earthworms, E. eugeniae, P. ceylanensis, and
P. excavatus exposed to lead (Pb) at a concentration of 150
mg/kg [35] which is supportive to the reduction of SOD ac-
tivity in the coelomic fluid ofE. eugeniae exposed to ZnS NPs
in the present study.

The activity of CAT in coelomic fluid of E. eugeniae
showed fluctuation during the experimental period. From the
initial level of 17.3 U/mg, CAT activity was significantly in-
creased on 7th day (25.6 U/mg) and then decreased on 14th
day (15.4 U/mg) after exposure to ZnS NPs (Fig. 7b). The
protease activity determined as the formation of clear zone
on the skim milk agar plates followed the same trend to that
of CAT (Fig. 6c, d). Garcia-Velasco et al. [36] reported that the
activity of CAT in the earthworm, Eisenia fetida exposed to
Ag NPs, showed increase on 3rd day. Further, the study con-
cluded that the activity of CATand DNA damage could be the
result of oxidative stress-mediated toxicity of Ag NPs. The
zone formation by protease in coelomic fluid of E. eugeniae
on 0th day was 6.2 mm which increased significantly to
9.6 mm on 7th day of exposure to ZnS NPs and declined
thereafter to 6.5 mm. The relative changes in the activities of
SOD, CAT, and protease are depicted in Fig. 8 where it is
apparently clear that the CAT and protease activity in the coe-
lomic fluid followed same trend of changes during the period
of exposure to ZnS NPs. The soils contaminated with metals
and pesticides deplete the antioxidant enzymes like SOD and
CAT in turn results in the development of stress in earthworms
and retards the normal activity, growth, and survival of earth-
worms [35, 37]. Correspondingly in the present study, the
contamination of soil with ZnS NPs at 300 mg/kg caused
abnormal fluctuations in coelomic fluid enzyme activities
(SOD, CAT, and protease) accompanied by increased protein
content.

4 Conclusion

The ZnS NPs green synthesized in eco-friendly technique
using the leaf extracts of the medicinal plant, A. precatorius
were confirmed with UV-Visible spectroscopy, FE-SEM, FT-
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IR, and XRD. The total protein content increased from 0th
day, 7th day, and 14th day of exposure to ZnS NPs in
OECD soil and the protein profile by SDS-PAGE showed
variation in comparison to unexposed worms, and this might
probably due to the interference of ZnS NPs to protein metab-
olism of E. eugeniae which requires further insight. The ac-
tivity of SOD showed relentless decline until 14th day where-
as CAT and protease showed significant enhancement on 7th
day of exposure and declined sharply on 14th day, indicating
that the earthworm is able to retain normalcy. Further studies
on different levels of ZnS NPs for longer duration and analy-
ses of coelomocyte activity related to immune mechanism of

the E. eugeniaemay provide pathways of effects and adaptive
mechanism to the exposure of NPs.
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