ARUMUGAM PILLAI SEETHAI AMMAL COLLEGE

Accredited with B⁺ Grade by NAAC

TIRUPPATTUR

DEPARTMENT OF MATHEMATICS SYLLABUS (2018-2019 to 2023 - 2024) M. Sc MATHEMATICS

CONTENTS

S.NO.	TITLE	PAGE NUMBER
1.	2018 -2019 to 2021 – 2022 syllabus	3 - 28
2.	2022 - 2023 syllabus	29 – 55
3.	2023 – 2024 syllabus	55 - 61

ALAGAPPA UNIVERSITY, KARAIKUDI NEW SYLLABUS UNDER CBCS PATTERN (w.e.f.2017-2018)

M.Sc., MATHEMATICS – PROGRAMME STRUCTURE (2018 – 19 to 2021 – 22)

Som	Course	Name of the Course		Hrs./	N	/lax. Ma	nrks
Sem.	Code	Name of the Course	CI.	Week	Int.	Ext.	Total
	7MMA1C1	Core–I– Algebra – I	5	6	25	75	100
	7MMA1C2	Core–II – Analysis – I	5	6	25	75	100
	7MMA1C3	MMA1C3 Core – III–Differential Geometry				75	100
т	7MMA1C4	Core –IV–Ordinary Differential	5	6	25	75	100
1		Equations					
	7MMA1E1	Elective–I: Number Theory	4	6	25	75	100
		Total	24	30			500
	7MMA2C1	Core –V–Algebra – II	5	6	25	75	100
	7MMA2C2	Core –VI–Analysis – II	5	6	25	75	100
	7MMA2C3	Core–VII–Partial Differential	5	6	25	75	100
II 7MM		Equations	5	0	25	75	100
	7MMA2C4	Core –VIII–Mechanics	5	6	25	75	100
	7MMA2E1	Elective–II Graph Theory		6	25	75	100
		Total	24	30			500
	7MMA3C1	Core–IX–Complex Analysis	5	6	25	75	100
	7MMA3C2	Core–X–Topology – I	5	6	25	75	100
	7MMA3C3	Core–XI–Probability and Statistics	5	6	25	75	100
III 7MMA3E1		Elective–III Discrete Mathematics	4	6	25	75	100
		Elective-IV	4	6	25	75	100
	7MMA3E6	Combinatorial Mathematics	•	0	25	10	100
		Total	23	30			500
	7MMA4C1	Core – XII–Functional Analysis	5	8	25	75	100

IV	7MMA4C2	Core – XIII–Operations Research	5	8	25	75	100
	7MMA4C3	Core – XIV–Topology II	5	7	25	75	100
	7MMA4E1	Elective–V Advanced Statistics	4	7	25	75	100
		Total	19	30			400
		Grand Total	90	120			1900

SEMESTER -1

S.No	Class	Semester	Subject name	Subject Code
I	Ι	I	ALGEBRA –I	7MMA1C1
	M.Sc	Semester	ANALYSIS- I	7MMA1C2
			DIFFERENTIALGEOMENTY	7MMA1C3
			ORDINARY DIFFERENTIAL EQUATION	7MMA1C4
			NUMBER THEORY	7MMA1E1

COURSE CODE: 7MMA1C1

CORE COURSE-I –ALGEBRA– I

Unit I

Group Theory: Definition of a group – Some examples of groups – Some preliminary Lemmas – Subgroups – A counting principle – Normal subgroups and Quotient groups – Homomorphisms – Automorphisms – Cayley's Theorem – Permutation Groups.

Unit II

Another counting Principle – Sylow's Theorem – Direct products

Unit III

Ring Theory: Definition and examples of rings – some special classes of Rings – Homomorphisms.

Unit IV

 $\label{eq:constraint} Ideals \ and \ Quotient \ Rings - More \ ideals \ and \ Quotient \ Rings - The \ field \ of \ quotients \ of \ an \ Integral \ Domain$

Unit V

Enclidean Rings – A Particular Euclidean Ring – Polynomial Rings – Polynomials over the Rational Field – Polynomial Rings over commutative Rings.

Text Book(s)

I.N.Herstein, Topics in Algebra (2nd Edition) Wiley Eastern Limited, New Delhi, 1975.

Chapter II -2.1 to 2.13 & Chapter III

Books for Supplementary Reading and Reference:

- 1. M.Artin, Algebra, Prentice Hall of India, 1991.
- 2. John B.Fraleigh, A First Course in Abstract Algebra, Addison Wesley, Mass, 1982.
- 3. D.S.Malik, J.N.Mordeson and M.K.Sen, Fundamentals of Abstract Algebra, McGraw Hill (International Edition), New York, 1997.

CORE COURSE-II – ANALYSIS – I

Unit I

Basic Topology: Metric Spaces - Compact sets - Perfect sets - Connected sets.

Unit II

Numerical sequences and series; Convergent sequences, Subsequences, Cauchy sequences, Upper and Lower limits – Special sequences, Series, Series of non–negative terms. The number e – The root and ratio tests.

Unit III

Power series – Summation by parts – Absolute convergence – Addition and Multiplication of series – Rearrangements

Unit IV

Continuity: Limits of functions – Continuous functions, Continuity and Compactness, Continuity and Connectedness – Discontinuities – Monotonic functions – infinite limits and limits at infinity.

Unit V

Differentiation: The derivative of a real function – Mean value theorems – the continuity of derivatives – L'Hospital's rule – Derivatives of Higher order – Taylor's theorem Differentiation of vector – valued functions.

Text Book

Walter Rudin, Principles of Mathematical Analysis, III Edition (Relevant portions of chapters II, III, IV & V), McGraw-Hill Book Company, 1976.

Books for Supplementary Reading and Reference:

- H.L.Royden, Real Analysis, Macmillan Publ.co., Inc. 4th edition, New York, 1993.
- 2. V.Ganapathy Iyer, Mathematical Analysis, Tata McGraw Hill, New Delhi, 1970.
- 3. T.M.Apostal, Mathematical Analysis, Narosa Publ. House, New Delhi, 1985.

CORE COURSE-III – DIFFERENTIAL GEOMETRY

Unit I

Space Curves – Definition of a space Curve – Arc length – tangent – normal and binormal – Curvature and Torsion – Contact between Curves and Surfaces – tangent surface – Involutes and evolutes – Intrinsic equations – Fundamental Existence Theorem for space Curves - Helices.

Unit II

Intrinsic Properties of a Surface – Definition of a Surface – Curves on a Surface – Surface of revolution – Helicoids – Metric – Direction Coefficients – families of Curves – Isometric Correspondence – Intrinsic properties.

Unit III

Geodesics – Canonical geodesic equations – Normal property of geodesics – Existence Theorems – Geodesic parallels.

Unit IV

Geodesic Curvature – Gaurs – Bonnet Theorem – Gaussian Curvature – Surface of Constant Curvature.

Unit V

Non-Intrinsic Properties of a Surface – The second fundamental form – Principal Curvature – Lines of Curvature – Developable – Developable associated with space curves and with curves on surfaces.

Text Book

T.J.Willmore, An Introduction to Differential Geometry, Oxford University Press

(17th Impression) New Delhi 2002 (Indian Print)

Chapter I	:	Sections 1 to 9
Chapter II	:	Sections 1 to 9
Chapter II	:	Sections 10 to 14
Chapter II	:	Sections 15 to 18
Chapter III	:	Sections 1 to 6

Books for Supplementary Reading and Reference:

- 1. D.Somasundaram, Differential Geometry, A First Course, Narosa Publishing House, Chennai, 2005.
- 2. D.J.Struik, Classical Differential Geometry, Addison Wesley Publishing Company INC, Massachusetts, 1961.

CORE COURSE-IV – ORDINARY DIFFERENTIAL EQUATIONS Unit I

Linear equations with constant coefficients – Linear dependence and Independence – a formula for the Wronskian – non-homogenous equation – homogeneous equation of order n-initial value problems for n^{th} order equations – equations with real constants – non-homogeneous equations of order n.

Unit II

Linear equations with variable coefficients : Reduction of the order of a homogeneous equation – non-homogeneous equation-homogeneous equations with analytic coefficients – Legendre equation.

Unit III

Linear equations with regular singular points – Euler equations – second order equations with regular singular points – an example – second order equations with regular singular points – general case – exceptional cases – Bessel equation – Bessel equation (continued) – regular points at infinity.

Unit IV

Existence and uniqueness of solutions to first order equations : Equations with variables separated – exact equations – method of successive approximations – Lipchitz condition – convergence of the successive approximations.

Unit V

Nonlocal existence of solutions-approximations to solutions and uniqueness of solutions – Existence and uniqueness of solutions to systems and n^{th} order equations – existence and uniqueness of solutions to system.

Text Book

Earl A.Coddington, An Introduction to Ordinary Differential Equations – Prentice Hall of India, 1987.

- Unit I Chapter 2 sections 2.4 to 2.10
- Unit II Chapter 3 sections 3.5 to 3.8
- Unit III Chapter 4 sections 4.1 to 4.4 and 4.6 to 4.9
- Unit IV Chapter 5 sections 5.2 to 5.6
- Unit -V Chapter 5 & 6 sections 5.7 to 5.8 and 6.6

Books for Supplementary Reading and Reference:

- 1. D.Somasundaram, Ordinary Differential Equations, Narosa Publishing House, Chennai, 2002.
- 2. M.D.Raisinghania, Advanced Differential Equations, S.Chand and Company Ltd, New Delhi, 2001.

COURSE CODE: 7MMA1E1 ELECTIVE COURSE-I (A) – NUMBER THEORY

Unit I

The fundamental Theorem of Arithmetic: Introduction – divisibility – greatest common divisor – Prime Numbers – The Fundamental theorem of arithmetic – The series of reciprocals of the primes the Euclidean Algorithm – the greatest common divisors of more than two numbers.

Unit II

Arithmetical functions and Dirichlet Multiplication: Introduction; the Mobius function $\mu(n) - \theta$ and μ – product formula for $\theta(n)$ the Dirichlet product of arithmetical functions Dirichlet inverses and the mobius inversion formula the Mangoldt function Λ (n) – Multiplicative functions – Multiplicative functions; and Dirichlet multiplication – the inverse of a Completely multiplicative function – Liouville's fn λ (n) – the division functions $\sigma \alpha$ (n) – Generalized Convolutions – Formal Power Series – the Bell series of an arithmetical function Bell series and Dirichlet Multiplication – Derivatives of arithmetical functions the selberg identity.

Unit III

Averages of Arithmetical Functions: Introduction The big on notation Asymptotic equality of functions – euler's summation formula some elementary asymptotic formulas – the average order of d (n) – the average order of the division functions $\sigma f(n)$ – the average order of Ψ (n) an application to the distribution of lattice points. Visible from the origin the average order μ (n) and of Λ (n) the partial sums of a Dirichlet product – Applications to μ (n) and Λ (n) Another identity for the partial sums of a Dirichlet product.

Unit IV

Congruences: Definition and Basic properties of congruences Residue classes and complete residue systems linear congruences – reduced residue systems and the Euler – Fermat theorem– Polynomial congruences modulo Lagrange's theorem – Applications of Lagrange's theorem Simultaneous linear congruences the Chinese remainder theorem – Application of the Chinese remainder theorem – polynomial congruences with prime power moduli the principle of cross classification a decomposition property of reduced residue systems.

Unit V

Quadratic residuces and the Quadratic Reciprocity Law: Lagrange's symbol and its properties– evaluation of (-1/p) and (2/P)– Gauss's Lemma – the quadratic reciprocity law applications of the reciprocity law the Jacobi symbol applications to Diophantine Equations.

Text Book

Tom M. Apostal, Introduction to Analytic Number theory, Springer Verlag.

Chapters : I, II, III, V & IX (upto Diophantine equations)

Books for Supplementary Reading and Reference:

- 1. Niven and H.S.Zuckerman, An Introduction to the Theory of Numbers, 3rd Edition, Wiley Eastern Ltd., New Delhi, 1989.
- 2. D.M.Burton, Elementary Number Theory, Universal Book Stall, New Delhi, 2001.

SEMESTER-II

S.No	Class	Semester	Subject name	Subject Code
			Algebra –II	7MMA2C1
1	I MSc.	II Semester	Analysis-II	7MMA2C2
			Partial Differential Equations	7MMA2C3
			Mechanics	7MMA2C4
			Graph theory	7MMA2E1

CORE COURSE-V-ALGEBRA-II

Unit I

Vector Space: Elementary basic concepts - Linear Independence and Basis.

Unit II

Dual spaces - Inner product spaces.

Unit III

Field: Extension fields - Roots of polynomials - More about roots.

Unit IV

The Elements of Galois theory.

Unit V

Linear Transformations: The Algebra of linear transformations – Characteristic roots – Matrices – Canonical forms Triangular Form – Hermitian, Unitary, and Normal transformations.

Text Book

I.N.Herstein, Topics in Algebra (2nd edition) John Wiley and Sons, New York.

Chapter IV	:	(Sections 4.1 to 4.4)
Chapter V	:	(Sections 5.1, 5.3, 5.5, 5.6)
Chapter VI	:	(Sections 6.1, 6.2, 6.3, 6.4, and 6.10)

Books for Supplementary Reading and Reference:

- 1. P.B.Bhattacharya, S.K.Jain and S.R.Nagpaul, Basic Abstract Algebra (2nd edition) Cambridge University Press, 1997 (Indian Edition)
- 2. S.Lang, Algebra 3rd edition, Addison-Wesley, Mass, 1993.
- 3. N.Jacobson, Basic Algebra, Vol. I & II W.H.Freeman, also Published by Hindustan Publishing Company, New Delhi, 1980.

CORE COURSE-VI-ANALYSIS-II

Unit I

Riemann-Stieltjes Integral: Definition and Existence of the Integral – Properties of the Integral, Integration and Differentiation, Integration of vector – valued functions – Rectifiable curves.

Unit II

Sequences and Series of functions: Discussion of main problem, Uniform convergence – continuity- Integration and Differentiation, Equicontinuous families of functions – the Stone Weierstrass theorem.

Unit III

Some special functions: Power series, the Exponential, Logarithmic and Trigonometric functions – the Algebraic completeness of the Complex field – Fourier Series – The Gamma function.

Unit IV

Lebesgue measure: Algebra of sets – Measurable space – Lebesgue outer measure – Lebesgue measurable measurable sets – non-measurable sets – Lebesgue measurable functions – Little wood's three principles.

Unit V

Lebesgue Integral: Riemann integral – Lebesgue Integral of a bounded function over a set of finite measure – Lebesgue Integral of nonnegative measurable function – general Lebesgue integral – Convergence theorems on measurable functions.

Text Book(s)

- 1. Walter Rudin, Principles of Mathematics Analysis (3rd edition), McGraw Hill 1976. (For Analysis part Chapters VI, VII and VIII)
- 2. H.L. Royden, Real Analysis (3rd edition) Macmillan Publishing Company, New York, 1988.(For Measure Theory chapters III and IV)

Books for Supplementary Reading and Reference:

- 1. G.De Barra, Measure Theory and Integration, Wiley Easten Ltd., New Delhi, 1987.
- 2. Malik S.C. and Savita Arora, Mathematical Analysis, Wiley Eastern Limited, New Delhi, 1991.

COURSE CODE: 7MMA2C3

CORE COURSE-VII – PARTIAL DIFFERENTIAL EQUATIONS

Unit I

Ordinary differential equations in more than two variables : Surfaces and curves in three dimensions-simultaneous differential equations of the first order and the first degree in three variables-methods of solution of dx/P=dy/Q=dz/R orthogonal trajectories of a system of curves on a surface-pfaffian differential forms and equations – solution of Pfaffian differential equations the three variables.

Unit II

Partial differential equations of the first order : Partial differential equations – origins of first order partial differential equations – Cauchy's problem for first order equations – linear equations of the first order-integral surfaces passing through a given curve-surfaces orthogonal to a given system of surfaces-nonlinear partial differential equations of the first order-Cauchy's method of characteristics.

Unit III

Compatible systems of first order equations – Charpits method-special types of first order equations – solutions satisfying given conditions – Jacobi's method.

Unit IV

Partial differential equations of the second order : Origin of second order equations – linear partial differential equations with constant coefficients. Equations with variable coefficients – separation of variables – method of integral transforms (exercise problems are excluded)

Unit V

Laplace's equation : Elementary solutions of Laplace's equation – boundary value problems – The Wave equation – Elementary solutions of the one dimensional wave equation – The Diffusion equation : Elementary solutions of the diffusion equation – separation of variables.

Text Book(s)

1. I.N.Sneddon,Elements of Partial Differential Equations,McGraw Hill Book Company, 1986.

Unit I :	Chapter 1 : Sections 1.1 to 1.6
Unit II :	Chapter 2 : Sections 2.1 to 2.8
Unit III:	Chapter 2 : Sections 2.9 to 2.13
Unit IV:	Chapter 3 : Sections 3.1, 3.4, 3.5, 3.9 and 3.10
Unit V :	Chapter 4, 5 6 : Sections 4.2, 4.4, 5.2, 6.3 and 6.4

Books for Supplementary Reading and Reference:

- 1. M.D.Raisinghania, Advanced Differential Equations, S.Chand&Company Ltd., New Delhi, 2001.
- 2. K.Sankara Rao, Introduction to Partial Differential Equations, Second Edition, Prentice Hall of India, New Delhi, 2006.
- 3. J.N.Sharma and K.Singh, Partial Differential Equations for Engineers and Scientists, Narosa Publishing House, Chennai, 2001.

CORE COURSE-VIII – MECHANICS

Unit I

 $The mechanical \ system-generalized \ coordinates-constraints-virtual \ work-energy \ and \ momentum.$

Unit II

Derivation of Lagrange's equations - examples - integrals of motion.

Unit III

Hamilton's principle - Hamilton's equations - other variations principle.

Unit IV

Hamilton principle function – Hamilton – Jacobi equations – separability.

Unit V

Differential forms and generation functions – special transformations – Lagrange and Poisson brackets.

Text Book(s)

1. D.Greenwood, Classical Dynamics, Prentice Hall of India, New Delhi, 1985.

Unit I :	Chapters 1 sections 1.1 to 1.5
Unit II :	Chapters 2 sections 2.1 to 2.3
Unit III:	Chapters 4 sections 4.1 to 4.3
Unit IV:	Chapters 5 sections 5.1 to 5.3
Unit V :	Chapters 6 sections 6.1 to 6.3

Books for Supplementary Reading and Reference:

- 1. H.Goldstein, Classical Mechanics, 2nd edition, Narosa Publishing House, New Delhi.
- 2. N.C.Rane and P.S.C Joag, Classical Mechanics, Tata McGraw Hill, New Delhi, 1991.
- 3. J.L.Synge and B.A.Griffth, Principles of Mechanics, McGraw Hill Book Co., New York, 1970.

ELECTIVE COURSE-II (A) – GRAPH THEORY

Unit I

Graphs-Subgraphs-Trees.

Unit II

Connectivity - Euler Tours and Hamiltonian cycles.

Unit III

Matchings - Edge colouring.

Unit IV

Independent sets and cliques - vertex colourings.

Unit V

Planar graphs.

Text Book

J.A.Bondy and V.S.R.Murty, Graph Theory and applications, Macmillan, London, 1976.

Chapter I	:	(Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7)
Chapter II	:	(Sections 2.1, 2.2, 2.3, 2.4)
Chapter III	:	(Sections 3.1, 3.2)
Chapter IV	:	(Sections 4.1, 4.2)
Chapter V	:	(Sections 5.1, 5.2)
Chapter VI	:	(Sections 6.1, 6.2)
Chapter VII	:	(Sections 7.1, 7.2)
Chapter VIII	:	(Sections 8.1, 8.2)
Chapter IX	:	(Sections 9.1, 9.2, 9.3, 9.4 & 9.6)

Books for Supplementary Reading and Reference:

- 1. S.A.Choudum, A First Course in Graph Theory, Macmillan, India Ltd., 1987.
- 2. R.Balakrishnan and K.Renganathan, A Text Book of Graph Theory, Springer Verlag, New York, 1999.

SEMESTER-III

S.No	Class	Semester	Subject name	Subject Code
1	II M.Sc	III Semester	COMPLEX ANALYSIS TOPOLOGY-I PROBABILITY AND STATISTICS DISCRETE MATHEMATICS COMBINATORIAL MATHEMATICS	7MMA3C1 7MMA3C2 7MMA3C3 7MMA3E1 7MMA3E6

CORE COURSE-IX-COMPLEX ANALYSIS

Unit I

Concept of analytic function – Elementary theory of power series – Conformability – Linear transformations.

Unit II

Complex integration – Cauchy integral formula.

Unit III

Local properties of analytic functions.

Unit IV

Calculus of residues.

Unit V

Power series expansions - canonical products - Jensen's formula.

Text Book

Lars V.Ahlfors, Complex Analysis, 3rd edition, McGraw Hill International Book Company, 1979.

Chapter II	:	(Sections 1, 2)
Chapter III	:	(Sections 2, 3)
Chapter IV	:	(Sections 1, 2, 3, & 5)
Chapter V	:	(Sections 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.3).

Books for Supplementary Reading and Reference:

- S.Ponnusamy, Foundations of Complex Analysis, Narosa Publication House, New Delhi, 2004.
- John B.Conway, Functions of One Complex Variable, 2nd edition, Springer-Verlag, International Student Edition, Narosa Publishing Company.

CORE COURSE-X-TOPOLOGY – I

Unit I

Topological Spaces – Basis of a topology – the order topology – the product topology on XxY – the subspace topology – closed sets and limit points.

Unit II

Continuous functions – the product topology – the metric topology – the quotient topology.

Unit III

Connected spaces – connected sets in the real line – components and path components – local connectedness.

Unit IV

Compact spaces – compact sets in the real line – limit point compactness.

Unit V

The countability axioms – the separation axioms – the Urysohn's lemma – the Uryshon's metrization theorem.

Text Book

James R.Munkres, Topology a first course, Prentice Hall of India Pvt. Ltd.,New Delhi (1987)

Chapter II	:	(Sections 2.1 to 2.10)
Chapter III	:	(Sections 3.1 to 3.4)
Chapter IV	:	(Sections 3.5 to 3.7)
Chapter V	:	(Sections 4.1 to 4.4)

Books for Supplementary Reading and Reference:

- James Dugundji, Topology, Prentice Hall of India, New Delhi, 1975.
- George F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co., 1963.

CORE COURSE-XI – PROBABILITY AND STATISTICS

Unit I

Probability and Distribution: Introduction – Set theory – The probability set function – Conditional probability and independence – Random variables of the discrete type – Random variables of the continuous type – properties of the distribution function – expectation of random variable – some special expectations – Chebyshev's Inequality.

Unit II

Multivariate Distributions: Distributions of two random variables – Conditional Distributions and Expectations – the correlation coefficient – Independent random variables – extension to several Random variables.

Unit III

Some special Distributions: The Binomial and Related Distributions – The Poisson Distribution– The Gamma and Chi-square Distributions – The Normal Distribution – The Bivariate Normal Distribution.

Unit IV

Distributions of functions of Random variables: Sampling Theory – Transformations of variables of the discrete type – Transformations of variables of the continuous type – the Beta, t and F distributions – Extensions of the change – of – variable Technique –Distributions of order statistics – The Moment generating – Function, Techniques – The distributions of X and ns^2/σ^2 – Expectations of functions of Random variables

Unit V

Limiting Distributions : Convergence in distribution – convergence in probability – Limiting Moment Generating Functions – The Central Limit Theorem – Some theorems on Limiting Distributions.

Text Book:

1. Introduction to Mathematical Statistics, (Fifth edition) by Robert V.Hogg and AllenT. Craig Pearson Education Asia.

Chapters I, II, III, IV (Omit 4.10) & V.

Books for Supplementary Reading and Reference:

- M.Fisz, Probability, Theory and Mathematical Statistics, John Wiley and Sons, New York. 1963.
- V.K.Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1988 (3rd Print)

ELECTIVE COURSE-III (A) – DISCRETE MATHEMATICS

Unit I

Algebraic Systems : Binary Operation – Algebraic Systems – Semigroups and Monoids – Homorphism and Isomophism of Semigroups and Monoids – Properties of Homomorphism – Subsemi groups and Submonoids.

Unit II

Mathematical Induction – Techniques of Proof – Mathematical Induction – Recurrence Relations and Generating Functions – Recurrence – an introduction – Polynomials and their Evaluations Recurrence Relations – Solution of Finite order Homogeneous (Linear) Relations.

Unit III

Solution of Non-homogeneous Relations – Generations Functions – Some Common Recurrence Relations – Primitive Recursive Functions – Recursive and Partial Recursive Functions.

Unit IV

 $Lattices-Lattices-Some\ Properties\ of\ Lattices-New\ Lattices-Modular\ and\ Distributive\ Lattices.$

Unit V

Boolean Algebra – Boolean Algebras – Boolean Polynomials – Karnaugh Map – Switching Circuits

Text Book:

1. Dr. M.K.Venkataraman, Dr. N.Sridharan and Dr. N.Chandra Sekaran, The National Publishing Company, Chennai.

Chapter IV; Chapter V -Sections 1 to 9 Chapter VII -Sections 7.1 to 7.6; Chapter X

Books for Supplementary Reading and Reference:

- Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd Indian Reprint 2006, Springer Verlag, New York.
- Kenneth H. Rosen, Discrete Mathematics and its Applications, Fourth edition, McGraw Hill Publications.
- A.Gill, Applied Algebra for Computer Science, Prentice Hall Inc., New Jersey.

ELECTIVE COURSE-IV (C) – COMBINATORIAL MATHEMATICS

Unit I

Generating function.

Unit II

Recurrence relation.

Unit III

The principle of inclusion and exclusion.

Unit IV

Polya theory of counting.

Unit V

Block Designs.

Text Book

CL.Liu, Introduction to Combinatorial Mathematics, Tata McGraw Hill.

Chapters : II III, IV, V & XIV.

Books for Supplementary Reading and Reference:

- R.P.Stanley, Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced Mathematics, Volume 49, Cambridge University Press, 1997.
- P.J.Cameron, Combinatorics : Topics, Techniques, Algorithms, Cambridge University Press, Cambridge, 1998.

SEMESTER-IV

S.No	Class	Semester	Subject name	Subject Code
			Functional Analysis	7MMA4C1
1	II MSc.	IV Semester	Operations Research	7MMA4C2
			Topology-II	7MMA4C3
			Advanced Statistics	7MMA4E1

CORE COURSE-XII –FUNCTIONAL ANALYSIS

Unit I

Normed spaces, continuity of linear Maps.

Unit II

Hahn – Banach theorems, Banach limits, Banach spaces.

Unit III

Uniform boundedness Principle - Closed graph and open mapping theorems

Unit IV

Duals and Transposes, Duals of $L^p \ ([a, \ b])$ and C $([a, \ b])$ (excluding moment sequences)

Unit V

Inner product spaces, orthonormal sets, projection and Reisz Representation theorems.

Text Book

Functional Analysis by B.V Limaye, Second Edition, New Age International Pvt. Ltd., Publishers.

:	(Section 5, 6, 7, 8)
:	Section 9 (Subsections 9.1, 9.2, & 9.3 only)
	& Sections 10
:	(Sections 13, 14)
	(excluding Moment Sequences Subsections 14.6
	& 14.7)
:	(Sections 21, 22, and 24.1, 24.2, 24.3 & 24.4)
	:

Books for Supplementary Reading and Reference:

- G.F.Simmons, Introduction to Topology and Modern Analysis, Tata McGraw Hill Publishing Company, New Delhi, 2004.
- H.C.Goffman and G.Fedrick, First Course in Functional Analysis, Prentice Hall of India, New Delhi, 1987.
- Walter Rudin, Functional Analysis, Tata McGraw Hill Publishing Company, New Delhi, 1973.

CORE COURSE XIII – OPERATIONS RESEARCH

Unit I

Network Models: Scope and definition of network models – Minimal spanning tree algorithm- Shortest - Route Problem: Examples of the shortest route applications, Shortest route algorithms, linear programming formulation of the shortest route problem - maximal flow model - Enumeration of cuts, maximal flow algorithm, linear programming formulation of maximal flow mode - CPM and PERT: Network representation, CPM Computations, construction of the time schedule, Linear programming formulation of CPM, PERT calculations.

Unit II

Deterministic inventory Models: General inventory Model - role of demand in the development of inventory models - static Economic - Order - Quantity models -Classic EOQ model, EOQ with price breaks, Multi item EOQ with storage limitation -Dynamic EOQ models: No setup Model, Setup Model. Unit III

Queing systems: Elements of a queuing model – Role of exponential distribution - Pure birth and Death Models (relationship between the Exponential and Poisson distributions) Pure birth Model, Pure death model.

Unit IV

Generalized poisson queuing model Specialized poisson Queues: Steady State measures of performance, Single Server Models, multiple server models, Machine Servicing Model (M/M/R): (GD/K/K), R>K - (M/G/1): (GD/∞/∞) - Pollaczek -Khintchine (P-K) formula – other queuing Models, Queuing Decision Models. Unit V

Non Linear Programming Algorithms: Unconstrained algorithms: Direct search Method, Gradient Method – Constrained Algorithms separable programming.

Text Book

Hamdy A.Taha, Operations Research, An Introduction (8th edition), Prentice – Hall of India Pvt. Ltd., New Delhi.

Chapters : VI, XI, XV and XIX (upto 19.2.1)

Books for Supplementary Reading and Reference:

- J.K.Sharma, Operations Research, Theory and Applications, 3rd edition, Macmillan • India Ltd, 2007.
- F.S.Hillier and G.J.Lieberman, Introduction to Operations Research (8th edition) Tata McGraw Hill Publishing Company, New Delhi, 2006.

CORE COURSE-XIV- TOPOLOGY - II

Unit I

Connectedness and Compactness: Local Compactness – The Tychonoff Theorem: The Tychonoff theorem.

Unit II

Completely Regular Spaces, The Stone - Cech Compactification.

Unit III

Metrization theorems and Paracompactness: Local Finiteness, The Nagata – Smirnov Metrization Theorem (Sufficiency) – The Nagata – Smirnov Theorem (necessity).

Unit IV

Complete Metric Spaces and Function Spaces: Complete metric spaces – A Space – Filling Curve – Compactness in Metric spaces – Point wise and compact convergence.

Unit V

The Compact – Open Topology – Ascoli's theorem – Baire Spaces – A Nowhere differentiable functions.

Text Book

James R Munkres, Topology, A First Course, Prentice Hall of India, New Delhi (1984)

Chapter III	:	(Section 3.8)
Chapter V	:	(Sections 5.1, 5.2, 5.3)
Chapter VI	:	(Sections 6.1, 6.2, 6.3)
Chapter VII	:	(Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8)

Books for Supplementary Reading and Reference:

- JL.Kelley, General Topology, Van Nostrnad, Reinhold Co., New York.
- K.D.Joshi, Introduction to General Topology, Wiley Eastern Ltd., 1983.

COURSE CODE: 7MMA4E1

ELECTIVE COURSE-V (A) – ADVANCED STATISTICS

Unit I

Introduction to statistical Inference: Point estimation – confidence intervals for means – confidence intervals for differences of means – test of statistical hypothesis – Additional comments about statistical tests – Chi-Square tests. **Unit II**

Sufficient Statistics: Measures of Quality of Estimators – a sufficient statistic for a parameter– properties of a sufficient statistic – completiness and uniqueness the exponential class of probability density – functions of a parameter. **Unit III**

More about estimation: Bayesian Estimation – Fisher Information and the Rao – Cramer inequality Limiting Distributions of Maximum Likelihood estimators. **Unit IV**

Theory of statistical tests: Certain Best tests – Uniformly most powerful tests – Likelihood Ratio Tests – the sequential probability Ratio Test.

Unit V

Inferences about Normal Models: The distributions of certain Quadratic forms – A test of the equality of several means – Noncentral χ^2 and noncentral F – multiple comparisons – The analysis of variance – A regression problem – A test of independence.

Text Book

Robert V. Hogg and Allen T.Craig, Introduction to Mathematical Statistics (Fifth Edition) by Pearson Education, Asia.

Chapter	:	VI
Chapter	:	VII (Omit 7.7, 7.8 and 7.9)
Chapter	:	VIII (Omit 8.4)
Chapter	:	IX (Omit 9.5)
Chapter	:	X (Omit 10.8 and 10.9)

Books for Supplementary Reading and Reference:

- V.K.Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1998 (3rd Print)
- M.Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963.

ALAGAPPA UNIVERSITY, KARAIKUDI NEW SYLLABUS UNDER CBCS PATTERN (w.e.f.2022-2023 and w.e.f. 2017-2018)

M.Sc., MATHEMATICS – PROGRAMME STRUCTURE (2022 - 23)

S.No	Course Code	Courses	Title of the paper	T/P	Credits	Hours/ Week		Marks	
	•		I - Semester		L	•	Ι	Е	Total
1	22MMA1C1	CC	Algebra - I	Т	4	6	25	75	100
2	22MMA1C2	CC	Analysis - I	Т	4	6	25	75	100
3	22MMA1C3	CC	Differential Geometry	Т	4	6	25	75	100
4	22MMA1C4	CC	Ordinary Differential Equations	Т	4	6	25	75	100
5	22MMA1E1	DSE-I	Number Theory	Т	4	4	25	75	100
			Library/ Yoga/Counseling/Fieldtrip			2			
					20	30	-	-	500
			II - Semester						
6	22MMA2C1	CC	Algebra - II	Т	4	5	25	75	100
7	22MMA2C2	CC	Analysis - II	Т	4	5	25	75	100
8	22MMA2C3	CC	Partial Differential Equations	Т	4	5	25	75	100
9	22MMA2C4	CC	Probability And Statistics	Т	4	5	25	75	100
10	22MMA2E1	DSE-II	Fuzzy Mathematics	Т	4	4	25	75	100
11	-	NME-I	Non Major Elective	Т	2	3	25	75	100
			Library/ Yoga/Counseling/Fieldtrip			3			
	SLC Self-learning course–MOOCs Extr				a credi	t			
					22	30	-	-	600
	1	1	III - Semester		1	1	T	· · · ·	
12	7MMA3C1	CC	Complex Analysis	Т	5	6	25	75	100
13	7MMA3C2	CC	Topology - I	Т	5	6	25	75	100
14	7MMA3C3	CC	Probability And Statistics	Т	5	6	25	75	100
15	7MMA3E1	DSE –III	Discrete Mathematics	Т	4	6	25	75	100
16	7MMA3E6	DSE –IV	Combinatorial Mathematics	Т	4	6	25	75	100
					23	30	-	-	500
			IV- Semester						
18	7MMA4C1	CC	Functional Analysis	Т	5	8	25	75	100
19	7MMA4C2	CC	Operations Research	Т	5	8	25	75	100
20	7MMA4C3	CC	Topology - II	Т	5	7	25	75	100
21	7MMA4E1	DSE - V	Advanced Statistics		4	7	25	75	100
			Library/ yoga/ Counseling/Fieldtrip			1			
	1	1	1	Total	19	30	-	-	400
					84	120	-	-	2000

SEMESTER-1

Semester	Class	Subject name	Subject Code
I	I M.Sc	Algebra –I	22MMA1C1
		Analysis- I	22MMA1C2
		Differential Geometry	22MMA1C3
		Ordinary Differential Equations	22MMA1C4
		Number Theory	22MMA1E1

		Semester - I			
Course code:		Core Course - I	T/P	С	H/W
22MMA1C1		ALGEBRA – I	Т	4	6
Objectives	□ To learn To train the	some foundations in Algebraic structures lil students in problem solving in Algebra.	ke Group	s and I	Rings. 🗆
Unit -I	Normal Automorphism	subgroups and Quotient groups – s– Cayley's Theorem – Permutation Group	Homo s.	morphi	isms –
Unit-II	Another	counting Principle – Sylow's Theorem – D	Direct pro	ducts.	
Unit -III	Ring Th Rings – Homor	neory: Definition and examples of rings – a norphisms.	Some sp	ecial c	lasses of
Unit -IV	Ideals a quotients of an	nd Quotient Rings – More ideals and Quoti Integral Domain.	ent Ring	s – The	e field of
Unit- V	Enclidean Rings – A Particular Euclidean Ring – Polynomial Rings – Polynomials over the Rational Field.				Rings –
 Text Book I.N.Herstein, 1975 Topics in Algebra, 2nd Edition Wiley Eastern Limited, New Delhi. Chapter 2 : Sections 2.6 to 2.13 Chapter 3 : except Section 3.11 Books for Supplementary Reading and Reference: M.Artin, 1001 Algebra Propriate Hell of India 					
John B.Fral	eigh, 1982 A Fir	st Course in Abstract Algebra, Addison We	sley, Ma	ss.	
Joseph A. C Delhi.	alian, 2008 Con	temporary Abstract Algebra, 4 th edition, Na	arosa Puł	ol. Hou	ise, New
D.S.Malik, (Interna	J.N.Mordeson ar ational Edition),	nd M.K.Sen, 1997 Fundamentals of Abstrac New York.	t Algebra	ı, McG	raw Hill
Vijay K. Khanna, S.K. Bhamri, 2013, A Course in Abstract Algebra, 4 th edition, Vikas Publishing House Pvt Ltd.,					n, Vikas
Outcomes	Outcomes Students will Explai	be able to in the fundamental concepts of algebraic str nstrate accurate and efficient use of ring the	uctures. cory.		

	Semester - I						
Course code:		Core Course - II	T/P	С	H/W		
22MMA1C2		ANALYSIS – I	Т	4	6		
Objectives	 To give a Metric Sp Mathematic To train the train	 To give a thorough knowledge of the various aspects of Real line and Metric Spaces which is imperative for any advanced learning in Pure Mathematics. To train the students for solving problems on continuity and differentiation. 					
Unit -I	Metric Spaces -	- Compact sets - Perfect sets - Connected s	ets.				
Unit-II	Numerical sequences and series; Convergent sequences, Subsequences, Cauchy sequences, Upper and Lower limits – Special sequences, Series, Series of non–negative terms. The number e – The root and ratio tests.						
Unit -III	Power series – Summation by parts – Absolute convergence – Addition and Multiplication of series.						
Unit -IV	Continuity: Limits of functions – Continuous functions, Continuity and Compactness, Continuity and Connectedness – Discontinuities – Monotonic functions – infinite limits and limits at infinity.						
Unit -V	Differentiation: The derivative of a real function – Mean value theorems – the continuity of derivatives – L'Hospital's rule – Derivatives of Higher order – Taylor's theorem Differentiation of vector – valued functions.						
Text Book Walter Rudin, 1976, Principles of Mathematical Analysis, 3 rd Edition (Relevant portions of chapters 2, 3, 4 & 5), McGraw-Hill Book Company.					rtions of		
T.M.Apost	al, 1985, Mathe	and Reference: matical Analysis, Narosa Publ. House, New	Delhi.				
Tom P. Ap	ostol, 1985, Ma	thematical Analysis, Narosa Publishing Hou	use, Nev	w Delhi			
V.Ganapatl	ny Iyer, 1970, M	Iathematical Analysis, Tata McGraw Hill, N	New De	lhi.			
H.L.Royde	n, 1993, Real A	nalysis, Macmillan Publ.co., Inc. 4 th edition	, New Y	York.			
A.J. White,	1968, Real An	alysis: An Introduction, Addison Wesley Pu	blishin	g Co., Ir	nc.		
Outcomes	Students will Acquire Understar	be able to e knowledge on the concepts of compact an d the base of Limit function and monotonic	nd conne functio	ectednes	SS 🗆		

	Semester - I			1		
Course code:	Core Course - III	T/P	C	H/W		
22MMA1C3	DIFFERENTIAL GEOMETRY	Т	4	6		
Objectives	□ To learn space curves, surfaces, Geodesics and curvat To analyze the geometrical problems and facts.	ure. 🗌				
Unit -I	Space Curves – Definition of a space Curve – Ar Normal and Binormal – Curvature and Torsion – Contact Surfaces – Tangent surface – Involutes and evolutes – Fundamental Existence Theorem for space Curves - Helices	c lengtl betwee Intrinsi	h – Ta en Cui ic equ	angent – rves and ations –		
Unit-II	Intrinsic Properties of a Surface – Definition of a S Surface – Surface of revolution – Helicoids – Metric – Di families of Curves – Isometric Correspondence – Intrinsic p	Intrinsic Properties of a Surface – Definition of a Surface – Curves on a urface – Surface of revolution – Helicoids – Metric – Direction Coefficients – unilies of Curves – Isometric Correspondence – Intrinsic properties.				
Unit- III	Geodesics – Canonical geodesic equations – Normal – Existence Theorems – Geodesic parallels.	Geodesics – Canonical geodesic equations – Normal property of geodesics Existence Theorems – Geodesic parallels.				
Unit -IV	Geodesic Curvature – Gaurs – Bonnet Theorem – Ga	Geodesic Curvature – Gaurs – Bonnet Theorem – Gaussian Curvature.				
Unit- V	Jnit- V Non-Intrinsic Properties of a Surface – The second fundamental form – Principal Curvature – Lines of Curvature .					
Text Book T.J.Willmo Impre	re, An Introduction to Differential Geometry, Oxford Ussion) New Delhi 2002 (Indian Print)	Jniversi	ty Pro	ess (17 th		
Chapter 1 :	Sections 1 to 9					
Chapter 2 :	Sections 1 to 17					
Chapter 3 :	Sections 1 to 4					
Books for Su Kobayash Publi	pplementary Reading and Reference: i S. and Nomizu. K. 1963 Foundations of Differential Geomet shers.	try, Inte	erscien	ce		
D.J.Struik Mass	, 1961 Classical Differential Geometry, Addison Wesley Pub achusetts.	lishing	Comp	any INC,		
D.Somasu Chen	ndaram, 2005 Differential Geometry, A First Course, Narosa nai.	Publish	ing H	ouse,		
Wihelm K Math	lingenberg: 1978 A course in Differential Geometry, Graduat ematics, Springer Verlag.	e Texts	in			
Outcomes	 Students will be able to Understand the advanced concepts in differential geo curves. Acquire the knowledge for the study of surfaces lead courses in geometry. 	ometry of ing to a	of spac	e ed		

		Semester - I				
Course code:		Core Course - IV	T/P	С	H/W	
22MMA1C4		ORDINARY DIFFERENTIAL EQUATIONS	Т	4	6	
Objectives		 To develop knowledge of differential equations and To study the existence, uniqueness, stability behavior the ODE. 	their ap of the	plication solution	ons. ns of	
Unit -I	equ n	Homogeneous equation of order n – Initial value plations – equations with real constants – non-homogeneous	oroblem ous equa	s for n ations o	th order of order	
Unit-II	equ	Reduction of the order of a homogeneous equation ation-Homogeneous equations with analytic coefficients	n – Nor – Leger	n-homo ndre eq	geneous	
Unit- III	ord equ	Linear equations with regular singular points – Euler equations – sScond rder equations with regular singular points – an example – Second order quations with regular singular points – general case				
Unit -IV	Reg equ	Exceptional cases – Bessel equation – Bessel equation (continued) – Regular points at infinity. Existence and uniqueness of solutions to first order equations: Equations with variables separated – Exact equations				
Unit- V	Method of successive approximations – Lipchitz condition – Convergence of the successive approximations – Nonlocal existence of solutions – Approximations to solutions and uniqueness of solutions					
Text Book Earl A.Co India, ((((Books for Su D.Somasu	oddin , 198 Chap Chap Chap Chap upple: indar	ngton, An Introduction to Ordinary Differential Equation 7. ter 2 : sections 2.7 to 2.10 ter 3 : sections 3.5 to 3.8 ter 4 : sections 4.1 to 4.4 & 4.6 to 4.9 ter 5 : sections 5.2 to 5.8 mentary Reading and Reference: am, 2002 Ordinary Differential Equations, Narosa Publis	ons – P	Prentice Duse, C	Hall of	
E.A. Co McGi	ddin raw l	gton and N. Levinson, 1955 Theory of Ordinary l Hill Publishing Company, New York.	Differer	ntial Ec	quaitons,	
M.D.Raisi Delhi	ingha i.	ania, 2001 Advanced Differential Equations, S.Chand an	nd Com	pany L	.td, New	
W.T. Reid	1, 197	71 Ordinary Differential Equations, John Wiley & Sons, J	New Yo	ork.		
Outcomes	S	 tudents will be able to Acquire the knowledge of mathematical techniques order ODE. Understand the conditions for the existence and unfor initial and boundary value problems. 	s for sol	ving hi s of sol	gher	

	Semester - I							
Course code:	DSE – 1-A	T/P	С	H/W				
22MMA1E1	NUMBER THEORY	Т	4	4				
Objectives	 To provide an introductory course in number theory. To study various arithmetical functions, multiplicative division functions. 	ve funct	ions aı	nd				
Unit -I	The fundamental Theorem of Arithmetic: Introduce greatest common divisor – Prime Numbers – The Fun- arithmetic – The series of reciprocals of the primes the Eucli- greatest common divisors of more than two numbers.	ction – dament idean A	Divis al the Algorit	ibility – orem of hm – the				
Unit-II	Arithmetical functions and Dirichlet Multiplicati Mobius function $\mu(n) - \theta$ and μ – product formula for $\theta(n)$ of arithmetical functions Dirichlet inverses and the Mobius Mangoldt function $\Lambda(n)$ – Multiplicative functions – Multip Dirichlet multiplication.	on: Int the Di inversi plicative	roduct richlet on for e funct	ion; the t product mula the ions and				
Unit- III	The inverse of a Completely multiplicative function – Liouville's fn λ (n) – the division functions $\sigma\alpha$ (n) – Generalized Convolutions – Formal Power Series – the Bell series of an arithmetical function Bell series and Dirichlet Multiplication – Derivatives of arithmetical functions the Selberg identity. Averages of Arithmetical Functions: Introduction The big on notation Asymptotic equality of functions – Euler's summation formula some elementary asymptotic formulas							
Unit -IV	The average order of the division functions $\sigma \pounds(n)$ \Box (n) an application to the distribution of lattice points. We the average order μ (n) and of Λ (n) the partial sums of Applications to $\mu(n)$ and Λ (n) Another identity for the part product.	– the a visible f a Diric ial sum	verage from the shlet p s of a l	order of ne origin roduct – Dirichlet				
Unit -V	Congruence: Definition and Basic properties of c classes and complete residue systems linear congruence – re and the Euler – Fermat theorem– Polynomial congruence theorem – Applications of Lagrange's theorem Simultaneous the Chinese remainder theorem – Application of the Chinese polynomial congruence with prime power moduli - the Classification - a Decomposition property of reduced Residue	congrue duced r e modu us linea e remain e Prin- ne syste	nce - esidue ilo La r cong nder th ciple ms.	Residue systems grange's gruence - neorem – of cross				

Text Book Tom M. Ap	Text Book Tom M. Apostal, Introduction to Analytic Number theory, Springer Verlag.							
Books for Sup	Books for Supplementary Reading and Reference:							
D.M.Burton	, 2001 Elementary Number Theory, Universal Book Stall, New Delhi.							
George And	lrews, 1994 Number Theory, Courier Dover Publications.							
Niven and Wiley	H.S.Zuckerman, 1989 An Introduction to the Theory of Numbers, 3 rd Edition, Eastern Ltd., New Delhi.							
William J. Compa	William J. Leveque, 1977 Fundamentals of Number Theory, Addison-Wesley Publishin Company, Phillipines.							
Outcomes	Students will be able to							
	□ Understand the concepts of Lioville's function, bell series and Dirichlet							
	multiplication.							
	\Box Acquire the skills to solve simultaneous congruence problems.							

SEMESTER-II

Semester	Class	Subject name	Subject Code
		Algebra –II	22MMA2C1
II	I M.Sc.,	Analysis-II	22MMA2C2
		Partial Differential Equations	22MMA2C3
		Probability and Statistics	22MMA2C4
		Fuzzy Mathematics	22MMA2E1

		Semester - II						
Course code:		Core Course - V	T/P	С	H/W			
22MMA2C1		ALGEBRA – II	Т	4	5			
Objectives		 To introduce the basic concepts and methods in the study of linear transformation on finite dimensional vector spaces. To introduce the general concepts in extension fields. 						
Unit -I	Basis.	Vector Space: Elementary basic concepts – Linear Independence and Basis.						
Unit-II		Dual spaces – Inner product spaces.						
Unit- III		Field: Extension fields – Roots of polynomials –	More abou	t roots.				
Unit -IV	Chara	Linear Transformations: The Algebra of linear tr cteristic roots – Matrices.	ansformatio	ons –				
Unit- V	transf	Canonical forms Triangular Form – Hermi ormations.	tian, Unita	ry, and	Normal			
Text Book I.N.Herste Chapt Chapt Books for Su DavidS.Du Stude	 Text Book I.N.Herstein, Topics in Algebra (2nd edition) John Wiley and Sons, New York. Chapter 4 : Sections 4.1 to 4.4 Chapter 5 : Sections 5.1, 5.3 & 5.5 Chapter 6 : Sections 6.1, 6.2, 6.3, 6.4 & 6.10 Books for Supplementary Reading and Reference: DavidS.Dummit and Richard M.Foote, 2015 Abstract Algebra, Third Edition, Wiley 							
John, B. F	raleigh	, A First Course in Abstract Algebra, Addison-We	sley Publisł	ning con	mpany.			
N.Jacobso Publis	n, 1980 shing C) Basic Algebra, Vol. I & II W.H.Freeman, also Pu Company, New Delhi.	blished by	Hindus	tan			
P.B.Bhatta Camb	acharya oridge U	, S.K.Jain and S.R.Nagpaul, 1997 Basic Abstract Juniversity Press, (Indian Edition)	Algebra (2 ^r	^d editio	n)			
S.Lang, , 1	S.Lang, , 1993 Algebra 3 rd edition, Addison-Wesley, Mass.							
Outcomes	Stuc	 Students will be able to Perform algebraic operations on polynomial expressions. Identify the degree leading coefficient and the leading term of a polynomial expression. 						

		Semester - II		-			
Course code:		Core Course - VI	T/P	С	H/W		
22MMA2C2		ANALYSIS – II	Т	4	5		
Objectives		To impart knowledge on the concept of functions of Rie integrals. To introduce lebesgue measure, measurable spaces and measurable functions.	mann-S	Stiel ¹ 1e	tjes		
Unit -I	Prope value	Riemann-Stieltjes Integral: Definition and Existence rties of the Integral, Integration and Differentiation, Inte d functions – Rectifiable curves.	of the egration	Intended Intended	egral – vector–		
Unit-II	conve famili	Sequences and Series of functions: Discussion of main ergence – Continuity- Integration and Differentiation les of functions – the Stone Weierstrass theorem.	proble n, Equ	m, U icon	Jniform tinuous		
Unit- III	Trigo Fourie	Some special functions: Power series, the Exponential, Logarithmic and Trigonometric functions – the Algebraic completeness of the Complex field – Fourier Series – The Gamma function.					
Unit -IV	measu sets –	Lebesgue measure: Algebra of sets – Measurable space – Lebesgue outer neasure – Lebesgue measure and Lebesgue measurable sets – non-measurable sets – Lebesgue measurable functions.					
Unit- V	Lebes	Little wood's three principles. Lebesgue Integral: Riemann integral – Lebesgue Integral of a bounded function over a set of finite measure.					
Text Book H.L. Roy York,	den, 1 .(For N	988 Real Analysis (3 rd edition) Macmillan Publishin Measure Theory chapters 3 and 4 (4.1 &4.2 only).	ıg Con	npan	y, New		
Walter Ru Analy	idin, 19 vsis par	976 Principles of Mathematics Analysis (3 rd edition), 1 t Chapters 6, 7 and 8)	McGrav	w H	ill. (For		
Books for Su G.De Barr	ppleme a, 1987	entary Reading and Reference: 7 Measure Theory and Integration, Wiley Easten Ltd., New	w Delhi	l.			
Malik S.C Delhi	c. and	Savita Arora, 1991 Mathematical Analysis, Wiley Eas	tern Li	mite	d, New		
N.L.Carot	N.L.Carothers, 2013 Real Analysis, Cambridge University press, Indian edition.						
Serge Lang, 1969 Analysis I & II, Addison-Wesley Publishing Company, Inc.							
Outcomes	 Students will be able to Acquire the knowledge on the concept of some special functions. Realize that this course had laid the foundation for the variety of courses. 						

		Semester - II			
Course code:		Core Course - VII	T/P	С	H/W
22MMA2C3		PARTIAL DIFFERENTIAL EQUATIONS	Т	4	5
Objectives		To introduce mathematical techniques for analyzing an differential equations. To apply partial differential equations to solve dynamic	nd solvi .cal prol	ng pa olems	rtial
Unit -I	equati proble	Partial differential equations of the first order: ons – Origins of first order Partial differential eque m for first order equations.	Partial uations	diffe – Ca	erential auchy's
Unit-II	given Partia charac	Linear equations of the first order - integral surface curve - Surfaces orthogonal to a given system of s l Differential equations of the first order - Ca cteristics.	s passin urfaces uchy's	ng thr - No meth	rough a onlinear nod of
Unit- III	types metho	Compatible systems of first order equations – Charpi of first order equations – solutions satisfying given c d.	t's meth onditior	nod - ns — J	Special acobi's
Unit -IV	equati Equat integra	Partial differential equations of the second order: Or ons – Linear partial differential equations with co ions with variable coefficients – Separation of vari al transforms (exercise problems are excluded).	igin of onstant ables –	secon coeff - met	d order icients. hod of
Unit- V	Bound dimen diffus	Laplace's equation: Elementary solutions of Laplace's equation: Elementary solutions of Laplary value problems – The Wave equation – Elementary sional wave equation – The Diffusion equation: Elementary solution – Separation of variables.	place's solutio ntary sol	equa ns of lution	tion – the one s of the
Text Book I.N.Sneddo Chap Chap Chap Chap Books for Sup E.T.Copson, P J.N.Sharma	Text Book I.N.Sneddon, 1986 Elements of Partial Differential Equations, McGraw Hill Book Compar Chapter 2 : Sections 2.1 to 2.13 Chapter 3 : Sections 3.1, 3.4, 3.5, 3.9 and 3.10 Chapter 4 : Sections 4.2 and 4.4 Chapter 5 : Section 5.2 Chapter 6 : Sections 6.3 and 6.4 Books for Supplementary Reading and Reference: E.T.Copson, Partial Differential Equations, Cambridge University Press.				
Narosa I	Publish	ning House, Chennai.	lition D	rontio	un Unll
of India, I	0, 200 New E	Delhi.	ntioli, P	rentic	с – пап
M.D.Raisingh Delhi.	M.D.Raisinghania, 2001 Advanced Differential Equations, S.Chand & Company Ltd., Delhi.			d., New	
Outcomes	Stud	lents will be able to			
		Understand the various concepts based on partial diffe	rential e	equati	ons.
		Develop clear thinking and analyzing for solving prob differential equations.	lems in	partia	1

	Semester - II						
Course code:		Core Course - VIII	T/P	С	H/W		
22MMA2C4		PROBABILITY AND STATISTICS	T 4		5		
Objectives		To introduce random variables of discrete and continuous typ To enable the students to learn about distribution functions and distributions.	e. nd limitin	g			
Unit -I	– Prop expect	Random variables of the discrete type – Random variables perties of the distribution function – Expectation of random variations – Chebyshev's Inequality.	of the con ariable –	ntinuo some	ous type special		
Unit-II	Distril variab	Multivariate Distributions: Distributions of two random v putions and Expectations – the correlation coefficient – les.	ariables – Indepene	- Con dent	ditional random		
Unit- III	Poisso Distril	Some special Distributions: The Binomial and Related on Distribution– The Gamma and Chi-square Distribut pution.	Distribu ions – '	tions The	– The Normal		
Unit -IV	Distributions of functions of Random variables: Sampling Theory Transformations of variables of the discrete type – Transformations of variables of the continuous type – the Beta, t and F distributions – Extensions of the change – of variable Technique –Distributions of order statistics – The Moment generating Function, Techniques – The distributions of X and ns^2/\Box^2 – Expectations of functions of Random variables						
Unit- V	Probal Some	Limiting Distributions: Convergence in distribution – Convergence in Probability – Limiting Moment Generating Functions – The Central Limit Theorem – Some theorems on Limiting Distributions.					
Text Book Robert V.I Educ	Hogg ar ation A	nd Allen.T, 1994 Introduction to Mathematical Statistics, 5 th sia.	edition, (Craig	Pearson		
Chapte Chapte Chapte Chapte Chapte	Chapter 1 : Sections 1.5 to 1.11 Chapter 2 : Sections 2.1 to 2.4 Chapter 3 : Sections 3.1 to 3.4 Chapter 4 : Sections 4.1 to 4.9 Chapter 5 : Sections 5.1 to 5.5						
Books for Sup M.Fisz, 190	plemen 53 Prob	tary Reading and Reference: ability, Theory and Mathematical Statistics, John Wiley and S	Sons, Nev	v Yoi	·k.		
V.K.Rohat Ltd., N	gi, 1988 ew Dell	An Introduction to Probability Theory and Mathematical St ni (3 rd Print)	atistics, V	Viley	Eastern		
Marek Cap York.	inski an	d Thomasz Zastawniak, 2003 Probability through problems,	Springer	Verla	g, New		
Sharma .T.K, 2005 A text book of probability and theoretical distribution, Discovery publishing house, New Delhi.				ıblishing			
Outcomes	Stud	Students will be able to Acquire the knowledge of different distributions like beta, t and F. Understand standard concepts and methods of distributions.					

Course code:		DSE – 2 A	T/P	С	H/W			
22MMA2E1		FUZZY MATHEMATICS	Т	4	4			
Objectives		 To introduce the algebraic concepts of fuzzy mathematics. To develop the theory and problems on fuzzy relations and fuzzy measures. 						
Unit -I	Logic.	Crisp Set - Fuzzy set - Basic Concept of fuzzy set - Extension Principles - fuzzy ogic.						
Unit-II	Interse	Operations on Fuzzy Sets - Fuzzy Complement - 2 ection - Combination of operations.	Fuzzy U	Inion	- Fuzzy			
Unit- III	Relatio	Fuzzy Relations – Binary Relation – Inverse Fuzzy Relation on - Proximity Relation- Fuzzy Relations Equation.	on - Fuzz	y equi	valence			
Unit -IV	Demp	Fuzzy measures - Belief and Plausibility measure- Probability measure – Dempster's rule of Combination - Possibility and Necessity measures.						
Unit- V	Inform	Measures of uncertainty and Information- Measures of Function – Shannon entropy - Boltzmann entropy.	zziness -	Heartl	ly			
 Private Ltd., New Delhi. Chapter 1 : Sections 1.1 to 1.4 & 1.6 Chapter 2 : Sections 2.1 to 2.5 Chapter 3 : Sections 3.1 to 3.4 & 3.8 Chapter 4 : Sections 4.1 to 4.5 Chapter 5 : Sections 5.1 to 5.3 Books for Supplementary Reading and Reference: M. Ganesh, 2006 Introduction to Fuzzy sets and Fuzzy logic, Prentice Hall of India, New Delhi. A.Kaufman, 1975 Introduction to the Theory of Fuzzy Subsets, Academic Press. V.Novak, 1969 Fuzzy Sets and Their Applications, Adom Hilger, Bristol. M. Vasuky,2019 Fuzzy Mathematics, Shanlax Publications, Madurai. 					hi. 996.			
Outcomes	Stud	ents will be able to Gain an in-depth knowledge in the concept of fuzzy set to Acquire knowledge in solving fuzzy mathematical problem	heory.					

SEMESTER-III

S.No	Class	Semester	Subject name	Subject Code
1	II M.Sc	III Semester	COMPLEX ANALYSIS TOPOLOGY-I PROBABILITY AND STATISTICS DISCRETE MATHEMATICS COMBINATORIAL MATHEMATICS	7MMA3C17MMA3C27MMA3C37MMA3E17MMA3E6

CORE COURSE-IX-COMPLEX ANALYSIS

Unit I

Concept of analytic function – Elementary theory of power series – Conformability – Linear transformations.

Unit II

Complex integration – Cauchy integral formula.

Unit III

Local properties of analytic functions.

Unit IV

Calculus of residues.

Unit V

Power series expansions - canonical products - Jensen's formula.

Text Book

Lars V.Ahlfors, Complex Analysis, 3rd edition, McGraw Hill International Book Company, 1979.

Chapter II	:	(Sections 1, 2)
Chapter III	:	(Sections 2, 3)
Chapter IV	:	(Sections 1, 2, 3, & 5)
Chapter V	:	(Sections 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.3).

Books for Supplementary Reading and Reference:

- S.Ponnusamy, Foundations of Complex Analysis, Narosa Publication House, New Delhi, 2004.
- John B.Conway, Functions of One Complex Variable, 2nd edition, Springer-Verlag, International Student Edition, Narosa Publishing Company.

CORE COURSE-X-TOPOLOGY – I

Unit I

Topological Spaces – Basis of a topology – the order topology – the product topology on XxY – the subspace topology – closed sets and limit points.

Unit II

Continuous functions – the product topology – the metric topology – the quotient topology.

Unit III

Connected spaces – connected sets in the real line – components and path components – local connectedness.

Unit IV

Compact spaces – compact sets in the real line – limit point compactness.

Unit V

The countability axioms – the separation axioms – the Urysohn's lemma – the Uryshon's metrization theorem.

Text Book

James R.Munkres, Topology a first course, Prentice Hall of India Pvt. Ltd.,New Delhi (1987)

Chapter II	:	(Sections 2.1 to 2.10)
Chapter III	:	(Sections 3.1 to 3.4)
Chapter IV	:	(Sections 3.5 to 3.7)
Chapter V	:	(Sections 4.1 to 4.4)

Books for Supplementary Reading and Reference:

- James Dugundji, Topology, Prentice Hall of India, New Delhi, 1975.
- George F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co., 1963.

CORE COURSE-XI – PROBABILITY AND STATISTICS

Unit I

Probability and Distribution: Introduction – Set theory – The probability set function – Conditional probability and independence – Random variables of the discrete type – Random variables of the continuous type – properties of the distribution function – expectation of random variable – some special expectations – Chebyshev's Inequality.

Unit II

Multivariate Distributions: Distributions of two random variables – Conditional Distributions and Expectations – the correlation coefficient – Independent random variables – extension to several Random variables.

Unit III

Some special Distributions: The Binomial and Related Distributions – The Poisson Distribution– The Gamma and Chi-square Distributions – The Normal Distribution – The Bivariate Normal Distribution.

Unit IV

Distributions of functions of Random variables: Sampling Theory – Transformations of variables of the discrete type – Transformations of variables of the continuous type – the Beta, t and F distributions – Extensions of the change – of – variable Technique –Distributions of order statistics – The Moment generating – Function, Techniques – The distributions of X and ns^2/σ^2 – Expectations of functions of Random variables

Unit V

Limiting Distributions : Convergence in distribution – convergence in probability – Limiting Moment Generating Functions – The Central Limit Theorem – Some theorems on Limiting Distributions.

Text Book:

1. Introduction to Mathematical Statistics, (Fifth edition) by Robert V.Hogg and AllenT. Craig Pearson Education Asia.

Chapters I, II, III, IV (Omit 4.10) & V.

Books for Supplementary Reading and Reference:

- M.Fisz, Probability, Theory and Mathematical Statistics, John Wiley and Sons, New York. 1963.
- V.K.Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1988 (3rd Print)

ELECTIVE COURSE-III (A) – DISCRETE MATHEMATICS

Unit I

Algebraic Systems : Binary Operation – Algebraic Systems – Semigroups and Monoids – Homorphism and Isomophism of Semigroups and Monoids – Properties of Homomorphism – Subsemi groups and Submonoids.

Unit II

Mathematical Induction – Techniques of Proof – Mathematical Induction – Recurrence Relations and Generating Functions – Recurrence – an introduction – Polynomials and their Evaluations Recurrence Relations – Solution of Finite order Homogeneous (Linear) Relations.

Unit III

Solution of Non-homogeneous Relations – Generations Functions – Some Common Recurrence Relations – Primitive Recursive Functions – Recursive and Partial Recursive Functions.

Unit IV

Lattices – Lattices – Some Properties of Lattices – New Lattices – Modular and Distributive Lattices.

Unit V

Boolean Algebra – Boolean Algebras – Boolean Polynomials – Karnaugh Map – Switching Circuits

Text Book:

1. Dr. M.K.Venkataraman, Dr. N.Sridharan and Dr. N.Chandra Sekaran, The National Publishing Company, Chennai.

Chapter IV; Chapter V -Sections 1 to 9 Chapter VII -Sections 7.1 to 7.6; Chapter X

Books for Supplementary Reading and Reference:

- Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd Indian Reprint 2006, Springer Verlag, New York.
- Kenneth H. Rosen, Discrete Mathematics and its Applications, Fourth edition, McGraw Hill Publications.
- A.Gill, Applied Algebra for Computer Science, Prentice Hall Inc., New Jersey.

ELECTIVE COURSE-IV (C) – COMBINATORIAL MATHEMATICS

Unit I

Generating function.

Unit II

Recurrence relation.

Unit III

The principle of inclusion and exclusion.

Unit IV

Polya theory of counting.

Unit V

Block Designs.

Text Book

CL.Liu, Introduction to Combinatorial Mathematics, Tata McGraw Hill.

Chapters : II III, IV, V & XIV.

Books for Supplementary Reading and Reference:

- R.P.Stanley, Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced Mathematics, Volume 49, Cambridge University Press, 1997.
- P.J.Cameron, Combinatorics : Topics, Techniques, Algorithms, Cambridge University Press, Cambridge, 1998.

SEMESTER-IV

S.No	Class	Semester	Subject name	Subject Code
			Functional Analysis	7MMA4C1
1	II MSc.	IV Semester	Operations Research	7MMA4C2
			Topology-II	7MMA4C3
			Advanced Statistics	7MMA4E1

CORE COURSE-XII –FUNCTIONAL ANALYSIS

Unit I

Normed spaces, continuity of linear Maps.

Unit II

Hahn – Banach theorems, Banach limits, Banach spaces.

Unit III

Uniform boundedness Principle - Closed graph and open mapping theorems

Unit IV

Duals and Transposes, Duals of $L^p \ ([a, \ b])$ and C $([a, \ b])$ (excluding moment sequences)

Unit V

Inner product spaces, orthonormal sets, projection and Reisz Representation theorems.

Text Book

Functional Analysis by B.V Limaye, Second Edition, New Age International Pvt. Ltd., Publishers.

(Section 5, 6, 7, 8)
Section 9 (Subsections 9.1, 9.2, & 9.3 only)
& Sections 10
(Sections 13, 14)
(excluding Moment Sequences Subsections 14.6
& 14.7)
(Sections 21, 22, and 24.1, 24.2, 24.3 & 24.4)

Books for Supplementary Reading and Reference:

- G.F.Simmons, Introduction to Topology and Modern Analysis, Tata McGraw Hill Publishing Company, New Delhi, 2004.
- H.C.Goffman and G.Fedrick, First Course in Functional Analysis, Prentice Hall of India, New Delhi, 1987.
- Walter Rudin, Functional Analysis, Tata McGraw Hill Publishing Company, New Delhi, 1973.

CORE COURSE XIII – OPERATIONS RESEARCH

Unit I

Network Models: Scope and definition of network models – Minimal spanning tree algorithm- Shortest - Route Problem: Examples of the shortest route applications, Shortest route algorithms, linear programming formulation of the shortest route problem - maximal flow model - Enumeration of cuts, maximal flow algorithm, linear programming formulation of maximal flow mode - CPM and PERT: Network representation, CPM Computations, construction of the time schedule, Linear programming formulation of CPM, PERT calculations.

Unit II

Deterministic inventory Models: General inventory Model - role of demand in the development of inventory models - static Economic - Order - Quantity models -Classic EOQ model, EOQ with price breaks, Multi item EOQ with storage limitation -Dynamic EOQ models: No setup Model, Setup Model. Unit III

Queing systems: Elements of a queuing model – Role of exponential distribution - Pure birth and Death Models (relationship between the Exponential and Poisson distributions) Pure birth Model, Pure death model.

Unit IV

Generalized poisson queuing model Specialized poisson Queues: Steady State measures of performance, Single Server Models, multiple server models, Machine Servicing Model (M/M/R): (GD/K/K), R>K - (M/G/1): (GD/∞/∞) - Pollaczek -Khintchine (P-K) formula – other queuing Models, Queuing Decision Models. Unit V

Non Linear Programming Algorithms: Unconstrained algorithms: Direct search Method, Gradient Method – Constrained Algorithms separable programming.

Text Book

Hamdy A.Taha, Operations Research, An Introduction (8th edition), Prentice – Hall of India Pvt. Ltd., New Delhi.

Chapters : VI, XI, XV and XIX (upto 19.2.1)

Books for Supplementary Reading and Reference:

- J.K.Sharma, Operations Research, Theory and Applications, 3rd edition, Macmillan • India Ltd, 2007.
- F.S.Hillier and G.J.Lieberman, Introduction to Operations Research (8th edition) Tata McGraw Hill Publishing Company, New Delhi, 2006.

CORE COURSE-XIV- TOPOLOGY - II

Unit I

Connectedness and Compactness: Local Compactness – The Tychonoff Theorem: The Tychonoff theorem.

Unit II

Completely Regular Spaces, The Stone - Cech Compactification.

Unit III

Metrization theorems and Paracompactness: Local Finiteness, The Nagata – Smirnov Metrization Theorem (Sufficiency) – The Nagata – Smirnov Theorem (necessity).

Unit IV

Complete Metric Spaces and Function Spaces: Complete metric spaces – A Space – Filling Curve – Compactness in Metric spaces – Point wise and compact convergence.

Unit V

The Compact – Open Topology – Ascoli's theorem – Baire Spaces – A Nowhere differentiable functions.

Text Book

James R Munkres, Topology, A First Course, Prentice Hall of India, New Delhi (1984)

Chapter III	:	(Section 3.8)
Chapter V	:	(Sections 5.1, 5.2, 5.3)
Chapter VI	:	(Sections 6.1, 6.2, 6.3)
Chapter VII	:	(Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8)

Books for Supplementary Reading and Reference:

- JL.Kelley, General Topology, Van Nostrnad, Reinhold Co., New York.
- K.D.Joshi, Introduction to General Topology, Wiley Eastern Ltd., 1983.

COURSE CODE: 7MMA4E1

ELECTIVE COURSE-V (A) – ADVANCED STATISTICS

Unit I

Introduction to statistical Inference: Point estimation – confidence intervals for means – confidence intervals for differences of means – test of statistical hypothesis – Additional comments about statistical tests – Chi-Square tests. **Unit II**

Sufficient Statistics: Measures of Quality of Estimators – a sufficient statistic for a parameter– properties of a sufficient statistic – completiness and uniqueness the exponential class of probability density – functions of a parameter. **Unit III**

More about estimation: Bayesian Estimation – Fisher Information and the Rao – Cramer inequality Limiting Distributions of Maximum Likelihood estimators. **Unit IV**

Theory of statistical tests: Certain Best tests – Uniformly most powerful tests – Likelihood Ratio Tests – the sequential probability Ratio Test.

Unit V

Inferences about Normal Models: The distributions of certain Quadratic forms – A test of the equality of several means – Noncentral χ^2 and noncentral F – multiple comparisons – The analysis of variance – A regression problem – A test of independence.

Text Book

Robert V. Hogg and Allen T.Craig, Introduction to Mathematical Statistics (Fifth Edition) by Pearson Education, Asia.

Chapter	:	VI
Chapter	:	VII (Omit 7.7, 7.8 and 7.9)
Chapter	:	VIII (Omit 8.4)
Chapter	:	IX (Omit 9.5)
Chapter	:	X (Omit 10.8 and 10.9)

Books for Supplementary Reading and Reference:

- V.K.Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1998 (3rd Print)
- M.Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963.

ALAGAPPA UNIVERSITY, KARAIKUDI NEW SYLLABUS UNDER CBCS PATTERN (w.e.f.2023-24)

M.Sc., MATHEMATICS – PROGRAMME STRUCTURE (2023 - 24)

S.No	Course Code	Courses	Title of the paper	T/P	Credits	Hours/ Week		Marks	
			III - Semester						
1	22MMA3C1	CC	Complex Analysis	Т	4	5	25	75	100
2	22MMA3C2	CC	Topology - I	Т	4	5	25	75	100
3	22MMA3C3	CC	Graph Theory	Т	4	5	25	75	100
4	22MMA3C4	CC	Mechanics	Т	4	5	25	75	100
5	22MMA3E1/ 22MMA3E2// 22MMA3E3	DSE –III	Advance statistics / Differential Equation/ Automata Theory	Т	4	4	25	75	100
6.	-	NME – II	Non – Major Elective Library/yoga/Counselling/ Fieldtrip	Т	2	3	25	75	100
		SLC	Self – Learning course – MOOC's			3			
	Total 22 30 600								

SEMESTER-III

Semester	Class	Subject name	Subject Code
ш	II M So	Complex Analysis	22MMA3C1
	II M.Sc.,	Topology-I	22MMA3C2
		Graph Theory	22MMA3C3
		Mechanics	22MMA3C4
		Advanced Statistics	22MMA3E1

	Semester - III						
Course code:	Core Course -IX	T/P C		H/W			
	COMPLEX ANALYSIS	Т	4	5			
Objectives	 To introduce a modern treatment to classical complex analysis. To develop a clear knowledge on complex integration, calculus of residues, Jensen's formula. 						
Unit -I	Power series – Abel's Limit T transformations.	heorem - C	onformab	ility – Linear			
Unit-II	Complex integration – Cauchy int	egral formul	a.				
Unit- III	Local properties of analytic functi	ons.					
Unit -IV	Calculus of residues.						
Unit- V	Power series expansions – canonical	products – J	lensen's f	ormula.			
 Text Book Lars V.Ahlfors, 1979 Complex Analysis, 3rd edition, McGraw Hill International Book Company. Chapter 2 : Sections 2.4 & 2.5 Chapter 3 : Sections 2 & 3 Chapter 4 : Sections 1, 2, 3, & 5 Chapter 5 : Sections 1.1, 1.2, 1.3, 2.1, 2.2, 2.3 & 3.3 Books for Supplementary Reading and Reference: John B.Conway, 2000 Functions of One Complex Variable, 2nd edition, Springer-Verlag, Internation Student Edition, Narosa Publishing Company. S. Ponnusamy, 1997 Foundations of Complex Analysis, Narosa Publishing House, New Delhi. S.Ponnusamy, 2004 Foundations of Complex Analysis, Narosa Publication House, New Delhi. Serge Lang, 1977 Complex Analysis, Addison Wesley. 							
Outcomes	 Students will be able to Understand the various intrinsic of analysis. Acquire the knowledge of analytic 	concepts and icity and con	the theor	y of complex			

		Semester - III							
Course code:		Core Course -X	T/P	С	H/W				
22MMA3C2		TOPOLOGY – I	Т	4	5				
Objectives		 To study the concepts concerned with properties that are preserved under continuous deformations of objects. To train the students to develop analytical thinking on continuity and connectivity. 							
Unit -I	produ	Topological Spaces – Basis of a topology – the oct topology on $X \square Y$ – the subspace topology – Closed s	order to ets and	polog Limit	y – the points				
Unit-II	quotie	Continuous functions – the product topology – the nent topology.	netric to	opolog	gy – the				
Unit- III	Comp	Connected spaces $-$ Connected sets in the real line $-$ Connects.	Compor	nents a	ind Path				
Unit -IV	Comp	Compact spaces – Compact sets in the Real actness.	line –	Limi	t point				
Unit- V	- the	The Countability Axioms – the Separation Axioms – the Urysohn's lemma – the Uryshon's metrization theorem.							
Text Book James R. Munkres, 1987 Topology a first course, Prentice Hall of India Pvt. Ltd., New Delhi. Chapter 2 : Sections 2.1 to 2.11 Chapter 3 : Sections 3.1 to 3.3 Chapter 4 : Sections 3.5 to 3.7 Chapter 5 : Sections 4.1 & 4.4									
Books for Su James Dug	ppleme gundji,	ntary Reading and Reference: 1975 Topology, Prentice Hall of India, New Delhi.							
George F Book	.Simmo x Co.	ons, 1963 Introduction to Topology and Modern Ana	alysis, 1	McGr	aw Hill				
J.L. Kelly	, Gener	al Topology, Van Nostrand, Reinhold Co., New York							
L.Steen and J.Seeback, 1970 Counter examples in Topology, Holt, Rinehart and Winston, New York.									
Outcomes		 Students will be able to Demonstrate an understanding of the concepts of metric spaces and topological spaces and their role in mathematics. Demonstrate familiarity with a range of examples of topological structures. 							

		Semester - III						
Course code:		Core Course -XI	T/P	С	H/W			
22MMA3C3		GRAPH THEORY	Т	4	5			
Objectives		\Box To introduce a border view of concepts in basic graph theory. \Box To emphasize on application aspect of graph theory.						
Unit -I	Adjac Cycle	Graphs and Simple Graphs – Graph Isomorphism – Incidence and Adjacency matrix – Subgraphs – Vertex degrees – Paths and connections – Cycles – Trees.						
Unit-II		Connectivity - Blocks - Euler Tours and Hamiltonian	cycles.					
Unit- III	chron	Matchings – Matchings and Coverings in Bipar natic number – vizing's theorem.	tite gr	aphs	- Edge			
Unit -IV		Independent sets and Cliques – Chromatic number – E	Brook's	theore	ems.			
Unit- V	Colou	Plane and Planar graphs – Duals graphs – Euler's form ir theorem and Four Colour conjecture.	nula – H	Bridge	s – Five			
J.A.Bondy Chapter Chapt Chapt Chapt Chapt Chapt Chapt Chapt Chapt Chapt Books for Su J.A. Bond R.Balakris Ne S.A.Choud Gary Char 1969 Grap	y and V 1 : Sec aer 2 : S aer 3 : S aer 4 : S aer 5 : S aer 6 : S aer 7 : S aer 8 : S aer 9 : S ppleme y, U.S. shnan a w Yorl dum, 1 trand, 2 h Theo	 S.R.Murty, 1976 Graph Theory and applications, Machins 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 & 1.7 Section 2.1 Section 3.1 Sections 4.1 & 4.2 Sections 5.1 & 5.2 Sections 6.1 & 6.2 Sections 8.1 & 8.2 Sections 9.1, 9.2, 9.3, 9.4 & 9.6 Sections 9.1, 976 Graph Theory with Applications, Mac Mand K.Renganathan, 1999 A Text Book of Graph Theory Section 7.1 Sections 4.1 & 4.2 Sections 9.1, 9.2, 9.3, 9.4 & 9.6 	AilanPro ory, Spi Ltd. CRC pro	ess Lto ringer ess. F.	n. d. Verlag, Harary,			
Outcomes Students will be able to □ Acquire fundamental knowledge of finding shortest paths. □ Develop the skills on five colour theorem and four colour conjecture.					e.			

		Semester - III							
Course code:		Core Course -XII	T/P	С	H/W				
22MMA3C4		MECHANICS	Т	4	5				
Objectives		 To introduce various principles in dynamical systems. To learn the techniques involved in the integrals of motion. 							
Unit -I	work	The Mechanical system – Generalized coordinates – Constraints – Virtual ork – Energy and Momentum.							
Unit-II		Derivation of Lagrange's equations – examples – Integ	grals of	motic	on.				
Unit- III		Hamilton's Principle – Hamilton's equations – other v	ariation	is prin	ciple.				
Unit -IV		Hamilton Principle function – Hamilton – Jacobi equa	tions.						
Unit- V	Lagra	Differential forms and Generation functions – Speciange and Poisson brackets.	al Tran	sform	ations –				
D.Greenwo Chapt Chapt Chapt Chapt Chapt Chapt	 Text Book D.Greenwood, 1985 Classical Dynamics, Prentice Hall of India, New Delhi. Chapter 1 : Sections 1.1 to 1.5 Chapter 2 : Sections 2.1 to 2.3 Chapter 4 : Sections 4.1 to 4.3 Chapter 5 : Sections 5.1 & 5.2 Chapter 6 : Sections 6.1 to 6.3 								
Books for Su H.Goldstei	ppleme in, , 20	entary Reading and Reference: 01 Classical Mechanics, 3 rd edition, Narosa Publishing I	House, I	New I	Delhi.				
N.C.Rane	and P.S	S.C Joag, 1991 Classical Mechanics, Tata McGraw Hill,	New D	elhi.					
J.L.Synge and B.A.Griffth, 1970 Principles of Mechanics, McGraw Hill Book Co., New York.									
P. Duraipandian, Laxmi Duraipandian and Muthamizh Jayapragasam, 1979 Mechanics, S Chand Publishing, 1 st edition.									
Outcomes	Stuc	 Students will be able to Work with the equations of motion using different principles. Understand the techniques involved in Hamilton's principle. 							

	Semester - III							
Course code: 22MMA3E1		DSE-3 A	T/P	С	H/W			
		ADVANCED STATISTICS	Т	4	4			
Objectives	□ To □ To	 To learn some concepts on statistical inference, estimation and statistical tests. To enable the students to gain a thorough knowledge of advanced statistics. 						
Unit -I	interv Statis tests.	Introduction to Statistical Inference: Point estimation – confidence ntervals for means – confidence intervals for differences of means – Test of Statistical hypothesis – Additional comments about Statistical tests – Chi-Square ests.						
Unit-II	statist Uniqu param	Sufficient Statistics: Measures of Quality of Esti ic for a parameter – Properties of a sufficient statistic ieness – the Exponential class of Probability density neter.	mators – Comp y – Fu	– a su oletene nctior	fficient ess and is of a			
Unit- III	Rao estima	More about estimation: Bayesian Estimation – Fisher – Cramer inequality - Limiting Distributions of Ma ators.	Inform aximun	ation Like	and the elihood			
Unit -IV	tests -	Theory of statistical tests: Certain Best tests – Unifo - Likelihood Ratio Tests.	ormly n	nost p	owerful			
Unit- V	forms Multi	Inferences about Normal Models: The distributions of certain Quadratic forms – A test of the equality of several means – Noncentral χ^2 and noncentral F – Multiple comparisons.						
Text Book Robert V. by Pe	Hogg a arson F	and Allen T.Craig, 2014 Introduction to Mathematical S Education, Asia.	Statistic	s (5 th]	Edition)			
Chapt Chapt Chapt Chapt Chapt	ter 6 : S ter 7 : S ter 8 : S ter 9: S ter 5 : S	Sections 6.1 to 6.6 Sections 7.1 to 7.6 Sections 8.1 to 8.3 Sections 9.1 to 9.3 Sections 10.1 to 10.4						
Books for Su M.Fisz, 19 York.	Books for Supplementary Reading and Reference: M.Fisz, 1963 Probability Theory and Mathematical Statistics, John Wiley and Sons, New York.							
Kapoor V.	K. Gup	ota S.C, 2014 Elementary Mathematics Statistics, Sultan	Chand	and S	ons.			
Manish M pvt. L	Manish Malik, 2020 probability and mathematical statistics, Alpha plus institute mathematics pvt. Ltd., 1 st edition.							
V.K.Roha Easte	V.K.Rohatgi, 1998 An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, (3 rd Print).							
Outcomes	Stuc	lents will be able to Understand basic theoretical and applied principles of Gain a thorough knowledge of applied statistics for pro-	statistic oblems	s. solvin	lg.			