
Java is an object-oriented programming language

developed by James Gosling and colleagues at Sun

Microsystems in the early 1990s.(James Gosling, Mike

Sheridan, and Patrick Naughton)

JAVA HISTORY

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java was started as a project called "Oak" by James

Gosling in June 1991. Gosling's goals were to

implement a virtual machine and a language that had

a familiar C-like notation but with greater uniformity

and simplicity than C/C++. The first public

implementation was Java 1.0 in 1995. It made the

promise of "Write Once, Run Anywhere", with

free runtimes on popular platforms

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

There were five primary goals in the creation of the

Java language:

1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple

operating systems.

3. It should contain built-in support for using computer networks.

4. It should be designed to execute code from remote sources

securely.

5. It should be easy to use by selecting what was considered the

good parts of other object-oriented languages.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Characteristics of Java

 Java is simple

 Java is object-oriented

 Java is distributed

 Java is interpreted

 Java is robust [memory management (opaque references, automatic

garbage collection)]

 Java is secure

 Java is architecture-neutral

 Java is portable [WORA - Write Once, Run Anywhere].

 Java’s performance

 Java is multithreaded (multiple simultaneous tasks).

 Java is dynamic
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

The three principles of OOP

 Encapsulation

– Objects hide their functions
(methods) and data
(instance variables)

 Inheritance

– Each subclass inherits all
variables of its superclass

 Polymorphism

– Interface same despite
different data types

car

auto-

matic
manual

Super class

Subclasses

draw() draw()

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

JDK Versions
 JDK 1.02 (1995)

 JDK 1.1 (1996)

 Java 2 SDK v 1.2 (a.k.a JDK 1.2, 1998)

 Java 2 SDK v 1.3 (a.k.a JDK 1.3, 2000)

 Java 2 SDK v 1.4 (a.k.a JDK 1.4, 2002)

Java Development Kit
 javac - The Java Compiler

 java - The Java Interpreter

 jdb - The Java Debugger

 appletviewer -Tool to run the applets

 javap - to print the Java bytecodes

 javaprof - Java profiler

 javadoc - documentation generator

 javah - creates C header files

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

JDK Editions

 Java Standard Edition (J2SE)
– J2SE can be used to develop client-side

standalone applications or applets.

 Java Enterprise Edition (J2EE)
– J2EE can be used to develop server-side

applications such as Java servlets and Java
ServerPages.

 Java Micro Edition (J2ME).
– J2ME can be used to develop applications

for mobile devices such as cell phones.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java IDE Tools

 Forte by Sun MicroSystems

 Borland JBuilder

 Microsoft Visual J++

 WebGain Café

 IBM Visual Age for Java

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

class Welcome

{

public static void main(String args[])

{

System.out.println("Welcome to Java!");

}

}

Compiling Programs

FOn command line
–javac file.java

FOn command line
–java classname

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Source Code

Create/Modify Source Code

Compile Source Code

i.e. javac Welcome.java

Bytecode

Run Byteode

i.e. java Welcome

Result

If compilation errors

If runtime errors or incorrect result

Compiling Programs

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java
Interpreter

on Windows

Java
Interpreter

on Sun Solaris

Java
Interpreter

on Linux

Bytecode

...

Executing Applications

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Compile-time EnvironmentCompile-time Environment

Java

Bytecodes

move locally

or through

network

Java

Source

(.java)

Java

Compiler

Java

Bytecode

(.class)

Java

Interpreter

Just in

Time

Compiler

Runtime System

Class

Loader

Bytecode

Verifier

Java

Class

Libraries

Operating System

Hardware

Java

Virtual

machine

How it works…!

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Anatomy of a Java Program

Comments

Package

Reserved words

Modifiers

Statements

Blocks

Classes

Methods

The main method
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Comments

The Java programming language supports three kinds of

comments:

/* text */

The compiler ignores everything from /* to */.

/** documentation */

This indicates a documentation comment (doc comment, for

short). The compiler ignores this kind of comment, just like it

ignores comments that use /* and */. The JDK javadoc tool

uses doc comments when preparing automatically generated

documentation.

// text

The compiler ignores everything from // to the end of the line.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Reserved words or keywords

Reserved words or keywords are words

that have a specific meaning to the

compiler and cannot be used for other

purposes in the program. For example,

when the compiler sees the word class,

it understands that the word after class

is the name for the class. Other

reserved words are

if,for,int,float,public, static, and

void.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Modifiers

Java uses certain reserved words called modifiers that

specify the properties of the data, methods, and classes

and how they can be used. Examples of modifiers are

public and static. Other modifiers are private, final,

abstract, and protected. A public datum, method, or

class can be accessed by other programs. A private

datum or method cannot be accessed by other

programs.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Statements
A statement represents an action or a

sequence of actions. The statement

System.out.println("Welcome to Java") is a

statement to display the greeting "Welcome

to Java!“. Every statement in Java ends

with a semicolon (;).

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Blocks

A pair of braces in a

program forms a block

that groups components of

a program.

public class Test {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class block

Method block

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Classes

The class is the essential

Java construct. A class is

a template or blueprint for

objects. The program is

defined by using one or

more classes.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Methods
A method is a named sequence of code that can be
invoked by other Java code.

A method takes some parameters, performs some
computations and then optionally returns a value (or
object).

your program may call the same method many times

methods can return a value

public static int addNums(int num1, int num2)

{

int answer = num1 + num2;

return answer;

}
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

main Method

The main method provides the

control of program flow. The

Java interpreter executes the

application by invoking the

main method.

The main method looks like

this:

public static void main(String

args [])

{
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Data and Variables

Integer Primitive Data Types

Type Size Range

byte 8 bits -128 to +127

short 16 bits -32,768 to +32,767

int 32 bits (about)-2 billion to +2 billion

long 64 bits (about)-10E18 to +10E18

Floating Point Primitive Data Types

Type Size Range

float 32 bits -3.4E+38 to +3.4E+38

double 64 bits -1.7E+308 to 1.7E+308

Char , String

Boolean
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

For each primitive type, there is a corresponding wrapper

class. A wrapper class can be used to convert a primitive

data value into an object, and some type of objects into

primitive data. The table shows primitive types and their

wrapper classes:

primitive type Wrapper type

byte Byte

short Short

int Int

long Long

float Float

double Double

char Character

boolean Boolean

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Variables only exist within the structure in which they are defined.

For example, if a variable is created within a method, it cannot be

accessed outside the method. In addition, a different method can

create a variable of the same name which will not conflict with the

other variable. A java variable can be thought of as a little box made

up of one or more bytes that can hold a value of a particular data

type:

class example

{

public static void main (String[] args)

{

long x = 123; //a declaration of a variable named x with a datatype of long

System.out.println("The variable x has: " + x);

}

}
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

TYPE CONVERSIONS

General Format:

(type-name)expression;

Examples Action

x=(int)7.5 7.5 is converted to integer by truncation

a=(int)21.3/(int)4.5 Evaluated as 21/4 & result would be 5

b=(double)sum/n Division is done in floating point mode

y=(int)a+b a is converted to integer & added to b

z=(int)(a+b) the result of a+b is converted to int.

p=cost((double)x) converts x to double before using it as

parameter.AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Note :

1.float to int causes truncation of the fractional part.

2.double to float causes rounding of digits.

3.long to int causes dropping of the excess higher order bits.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Arithmetic Operators

The Java programming language has includes five simple

arithmetic operators like are + (addition), - (subtraction),

* (multiplication), / (division), and % (modulo).

The following table summarizes the binary arithmetic operators

in the Java programming language.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Assignment Operators

The assignment operator is evaluated from right to left, so a = b = c = 0;

would assign 0 to c, then c to b then b to a.

i = i + 2;

Here we say that we are assigning i's value to the new value which is i+2.

A shortcut way to write assignments like this is to use the += operator.

It's one operator symbol so don't put blanks between the + and =.

i += 2; // Same as "i = i + 2“

//assign the literal

//"Hello" to str

String str = new String("Hello");

//assign b to a, then assign a

//to d; results in d, a, and b being equal

int d = a = b;

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Increment and Decrement Operators

There are 2 Increment or decrement operators -> ++ and --.

These two operators are unique in that they can be written both

before the operand they are applied to, called prefix increment

/decrement, or after, called postfix increment /decrement. The

meaning is different in each case.

Example

x = 1;

y = ++x;

System.out.println(y);

prints 2, but

x = 1;

y = x++;

System.out.println(y);

prints 1 AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Relational Operators

A relational operator compares two values and determines the

relationship between them. For example, != returns true if its

two operands are unequal. Relational operators are used to test

whether two values are equal, whether one value is greater than

another, and so forth.

The relation operators in Java are: ==, !=, <, >, <=, and>=.

The meanings of these operators are:

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java Conditional Operators

The JVM tests the value of Boolean-expression. If the value is true, it

evaluates expression-1; otherwise, it evaluates expression-2. For

Example

if (a > b)

{

max = a;

}

else

{

max = b;

}

Setting a single variable to one of two states based on a single condition is

such a common use of if-else that a shortcut has been devised for it, the

conditional operator, ?:. Using the conditional operator you can rewrite the

above example in a single line like this:

max = (a > b) ? a : b;

Logical Operator

&& --AND

|| -- OR

! -- NOT

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Java If-Else Statement

The if-else class of statements should have the following form:

Simple IF

if (condition)

{

statements;

}

IF….ELSE

if (condition)

{

statements;

} else

{

statements;

}

ELSE IF LADDER

if (condition)

{

statements;

}

else if (condition)

{

statements;

} else

{

statements;

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Operator Precedence in Java

()

*,/

+,-
System.out.println("1 + 2 = " + 1 + 2);

System.out.println("1 + 2 = " + (1 + 2));

--

System.out.println(1 + 2 + "abc");

System.out.println("abc" + 1 + 2);

Example

class demo

{

public static void main(String[] args)

{

int count = 6+2*5-8/2;

System.out.println("Count is: " + count);

}

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Operator Description Level Associativity

[]
.

()
++
--

access array element
access object member

invoke a method
post-increment
post-decrement

1 left to right

++
--
+
-
!
~

pre-increment
pre-decrement

unary plus
unary minus
logical NOT
bitwise NOT

2 right to left

()
new

cast
object creation

3 right to left

*
/
%

multiplicative 4 left to right

+ -
+

additive
string concatenation

5 left to right

<< >>
>>>

shift 6 left to right

< <= > >= instanceof
relational

type comparison
7 left to right

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

==
!=

equality 8 left to right

& bitwise AND 9 left to right

^ bitwise XOR 10 left to right

| bitwise OR 11 left to right

&& conditional AND 12 left to right

|| conditional OR 13 left to right

?: conditional 14 right to left

= += -= *= /= %= &= ^= |= <<= >>= >>>= assignment 15 right to left

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Looping Statement

The for Statement

The for statement provides a compact way to iterate over a range of values.

Programmers often refer to it as the "for loop" because of the way in which it

repeatedly loops until a particular condition is satisfied. The general form of the for

statement can be expressed as follows:

for (initialization; termination; increment)

{

statement(s)

}

When using this version of the for statement, keep in mind that:

•The initialization expression initializes the loop; it's executed once, as the loop

begins.

•When the termination expression evaluates to false, the loop terminates.

•The increment expression is invoked after each iteration through the loop; it is

perfectly acceptable for this expression to increment or decrement a value.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

class ForDemo

{

public static void main(String args [])

{

for(int i=1; i<11; i++)

{

System.out.println("Count is: " + i);

}

}

}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10 AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

While Loop
The while statement continually
executes a block of statements
while a particular condition is true.
Its syntax can be expressed as:

while (expression)
{

statement(s)
}
The while statement evaluates expression,

which must return a boolean value. If the

expression evaluates to true, the while

statement executes the statement(s) in the

while block.

The while statement continues testing the

expression and executing its block until the

expression evaluates to false.

Using the while statement to print the

values from 1 through 10 can be

accomplished as in the following

WhileDemo program:

class whiledemo
{

public static void main(String[] args)

{
int count = 1;
while (count < 11)

{

System.out.println("Count is: "+ count);
count++;

}
}

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

The Java programming language also provides a do-while statement, which can be

expressed as follows:

do {

statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at

the bottom of the loop instead of the top. Therefore, the statements within the do block

are always executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo {

public static void main(String[] args)

{

int count = 1;

do {

System.out.println("Count is: " + count);

count++;

} while (count <= 11);

}

}
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

ARRAYS

An Array is a group of contiguous or related data items

that share a common name.

Types of Array

1.One Dimensional Array

2.Two Dimensional Array

One Dimensional Array

A list of items can be given one variable name using only

one subscript and such a variable is called a single

subscripted variable or one-dimensional array.

For example

int number[]= new int[5];

The computer reserves five storage location.

Like that table.

Number[0]

Number[1]

Number[2]

Number[3]

Number[4]
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

The values of the array elements can be assigned as follows

number[0]=35

number[1]=40

number[2]=30

number[3]=25

number[4]=50

This would cause the array number to store the values like

that table

35

40

30

25

50

number[0]

number[1]

number[2]

number[3]

number[4]

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Creating an Array

Like any other variables,arrays must be declared and created

in the computer memory before they are used .

1.Declare the Array

2.Create memory locations

3.Put values into the memory location.

Declaration of Array.

Arrays in java may be declared in two forms:

Form1

datatype arrayname[];

Form2

datatype [] arrayname;

Examples:

int number[];

float average[];

int [] num; AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Initialization of Arrays

arrayname[subscript]=value;

Example

Number[0]=35;

Type arrayname[]={list of values};

int number [] = { 35 , 40 ,20 ,57 ,19};

Its possible to assign an array object to another

int a[] = { 1 , 2 , 3}

int b[];

b=a;

Array Length:

int k=array.length; AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

TWO – DIMENSIONAL ARRAYS
The table shows the value of sales of three items by four salesgirls.

Item1 Item2 Item3

Salesgirl#1 310 275 365

Salesgirl#2 210 190 325

Salesgirl#3 405 235 240

Salesgirl#4 260 300 380

The table contains a total of 12 values, three in each line.We

can think of this table as a matrix consistng of four rows and

three columns. Each row represents the values of sales by a

particular salesgirl and each column represents the values of

sales of a particular item.

In mathematics , we represent a particular value in a matrix by

using two subscripts such as Vij. V denotes Entire Matrix.

Vij refers to the value in the ith row and jth column

For example V23 refers to the value 325.

In java its can be represented as V[4][3].
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

In two dimensional arrays the first index selects the row

and the second index selects the column within that row.

Declaration

int myArray[] [];

myArray=new int[3][4];

Or

int myArray[][]= new int[3][4];

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Two dimensional arrays may be initialized by following

their declaration with a list of initial values enclosed in

braces.

int table[2][3]={0,0,0,1,1,1}

Initializes the elements of the first row to zero and the

second row to one. The initialization is done row by row.The

above statement can be equivalently written as

int table[] []={{0,0,0},{1,1,1}};

By surrounding the elements of each row by braces.

We can also initializes a two-dimensional array in the form

of a matrix….

int table[] []={

{0,0,0},

{1,1,1}

}; AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Variable size of Arrays

Java treats multidimensional arrays as “arrays of arrays ”.It

is possible to declare a two-dimensional array as follows:

int x[][]=new int[3][];

x[0]=new int[2];

x[1]=new int[4];

x[2]=new int[3];

These statements create a two-dimensional array as having

different lengths for each row .

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

STRINGS
String represent a sequence of characters.

char temp=new char[4];

temp[0]=‘j’;

temp[1]=‘a’;

temp[2]=‘v’;

temp[3]=‘a’;

In Java , Strings are class objects and implemented using two classes namely

String and StringBuffer.

Java Strings as compared to C strings are more reliable and predictable. A Java

string is not a character array and is not NULL terminated.

String name;

name=new String(“Apsac”);

or

String name=new String(“Apsac”);

To get the length of String using the length method

int m=name.length();

String fullname=firstname+lastname;

String Fullname=“apsa”+”college”
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

String Arrays

String item=new String[3];

Its create item array of size of 3 to hold three string

statements.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

String Buffer

StringBuffer s=New StringBuffer();

Method Task

s1.setCharAt(n,’x’) Modifies the nth character to x

s1.append(s2) Appends the string s2 to s1 at the end

S1.insert(n,s2) insert the string s2 at the position n of

the string s1

S1.setLength(n) Sets the length of the string s1 to n.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Vector

Arrays can be easily implemented as Vectors.that can hold objects of any type

and any number.The objects do not have to be homogenous.

Vector v=new Vector(); declaring without size

Vector v=new Vector(5); declaring with size

Methods

v.addElement(item) – Adds the item to the list at the end

v.elementAt(10) -

v.size()

v.removeElement(item)

v.removeElementAt(n)

v.removeElements()

v.copyInto(array)

v.insertElementAt(item,n)

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Documentation Section

Package Statement

Import Statements

Interface Statement

Class Definitions

Main Method Class

{

Main Method Definition

}

Suggested

Optional

Optional

Optional

Optional

Essential

General structure of a Java Program

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Chapter 8 : Classes , Objects and Methods

Classes create objects and objects use methods to communicate between them.

In Java , the data items are called fields and the functions are called methods.

Defining a CLASS

class classname [extends superclassname]

{

[variable declaration;]

[method declaration;]

}

Everything inside the square brackets is optional.

classname and superclassname are any valid Java Identifiers .The keyword

extends indicates that the properties of the superclassname class are extended

to the classname class. This concept known as inheritance.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Adding Variables

Data is encapsulated in class by placing data fields inside the body of the class

definition. These variables are called instance variables because they are

created whenever an object of the class is instantiated.

class rectangle

{

int length;

int width;

}
The class rectangle contains two integer type instance variables. It is allowed

to declare them in one line as

int length , width;

These variables are only declared and therefore no storage space has been

created in the memory. Instance variables are also known as member

variables.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Adding Methods

Methods are declared inside the body of

the class but immediately after the

declaration of instance variables.

type methodname (parameter-list)

{

method-body;

}

Method declaration have four parts

•The name of the method (method name)

•The type of value the method returns(type)

•A list of parameters(parameter-list)

•The body of the method

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

class Rectangle

{

int length,width;

void getData(int x,int y)

{

length=x;

width=y;

}

int rectArea()

{

int area=length*width;

return(area);

}

}

class Access

{

int x;

void method1()

{

int y;

x=10; // legal

y=x; // legal

}

void method2()

{

int z;

x=5; // legal

z=10; // legal

y=1; // illegal

}

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Creating Objects
An object in Java is essentially a block of memory that contains space to store

all the instance variables . Creating an object is also referred to as instantiating

an object.

Objects in Java are created using the new operator. The new operator creates an

object of the specified class and returns a reference to that object.

Rectangle rect1; // declare

rect1=new Rectangle() ; // instantiate

Action Statement Result

Rectangle rect1; rect1

rect1=new Rectangle; rect1

Rect1 is a reference

to Rectangle object

Declare null

Instantiate *

Rectangle

object
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Constructors
•Constructors enables an object to initialize itself

when it is created.

•Constructors have the same name as the class itself.

•They do not specify a return type , not even void.

class Rectangle

{

int length,width;

Rectangle(int x , int y)

{

length=x;

width=y;

}

int rectArea()

{

int area=length*width;

return(area);

}

}

class areafind

{

Public static void main(String args[])

{

Rectangle rect1=new Rectangle(15,10); // Calling Constructor

int a=rect1.rectArea();

System.out.println(“ Area : “+ a);

}

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

METHODS OVERLOADING

Create methods that have the same name , but different parameter lists and different definitions is called

Method Overloading.

When we call a method in an object , Java matches up the method name first and then the number and

type of parameters to decide which one of the definitions to execute .

This process is known as polymorphism.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

STATIC MEMBERS

A Class basically contains two sections . One declares variables and the other declares methods . These

variables and methods are called instance variables and instance methods . This is because every time the

class is instantiated , a new copy of each of them is created. They are accessed using the objects(with dot

operator).

Let us assume that we want to define a member that is common to all the objects and accessed without

using a particular object. That is ,the member belongs to the class as a whole rather than the objects

created from the class.

static int count ;

static int max(int x,int y);

The members that are declared static as shown above are called static members.

Restrictions:

1.They can only call other static methods.

2.They can only access static data.

They cannot refer to this or super in any way.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

NESTING OF METHODS

A method can be called by using only its name by another method of

the same class is known as nesting of methods.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

INHERITANCE : EXTENDING A CLASS
Reusability is yet another aspect of OOP paradigm. It is always nice if we could reuse something that

already exists rather than creating the same all over again.Java classes can be reused in several ways.

This is basically done by creating new classes,reusing the properties of existing ones.The mechanism of

deriving a new class from an old one is called Inheritance.

The old class is known as the base class or super class or parent class.

The new one is called the sub class or derived class or child class.

The inheritance allows subclasses to inherit all the variables and methods of their parent classes.

Defining a Subclass

class subclassname extends superclassname

{

variable declaration;

methods declaration;

}

The keyword extends signifies that the properties of the superclassname are extended to the

subclassname.The subclass will now contain its own variables and methods as well those of the

superclass.This kind of situation occurs when we want to add some more properties to an existing class

without actually modifying it.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Inheritance may take different forms:

Single Inheritance (only one super class)

Multiple inheritance (several super classes) // java does not directly implement Multiple Inheritance

Hierarchical inheritance (one super class, many subclasses)

Multilevel Inheritance (Derived from a derived class)

(a) Single inheritance (b) Hierarchical inheritance

(c) Multilevel inheritance (d) Multiple inheritance

A

B

A

B C D

A

B

C

A B

C

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Subclass Constructor

A subclass constructor is used to construct the instance variables of both the

subclass and the superclass.The subclass constructor uses the keyword super to

invoke the constructor method of the superclass.

Conditions :

Super may only be used within a subclass constructor method.

The call to superclass constructor must appear as the first statement within the

subclass constructor

The parameters in the super call must match the order and type of the instance

variable declared in the superclass.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Multilevel Inheritance
A common requirement in object-oriented programming is the use of a derived class as a super

class.

Grantfather Superclass

Father Intermediate superclass

Child Subclass
class A

{

……

……..

}

class B extends A // First Level

{

……

……..

}

class B extends A // Second Level

{

……

……..

}

A

B

C

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

The class A serves as a base class for the derived class B which in

turn serves as a base class for the derived class C.The chain ABC is

known as inheritance path.

class A members

class B members

class C members

C contains B with contains A

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Hierarchical Inheritance

Many programming problems can be cast into a hierarchy where certain features of one level

are share by many others below the level.

The example shows a hierarchical classification of accounts in a commercial bank. This is

possible because all the accounts posses certain common features.

Account

Fixed-depositSavings Current

Short Medium Long

Hierarchical classification of bank accounts

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Overriding Methods
Its possible by defining a method in the subclass that has the same name , same arguments and

same return type as a method in the super class.When the method is called ,the method

definition in the subclass is invoked and executed instead of the one in the superclass .This is

known as overriding.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Final Variables and Methods

All methods and variables can be overridden by default in subclasses. If we wish to

prevent the subclasses from overriding the members of the superclass , we declare them as

final using the keyword final as a modifier.

Example

final int size=100;

final void show()

{ ….

…….}

Making a method final ensures that the functionality defined in this method will never be

altered in any way. The value of a final variable can never be changed.

Final Classes

Sometimes we may like to prevent a class being further subclassed for security reasons.A

class that cannot be subclassed is called a final class.

final class abc{ ……………… }

final class bcd extends mark { ……….. }
Any attempt to inherit these classes will cause an error and the compiler will not allow it.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Finalizer Methods

A constructor method is used to initialize an object when its declared . This process is known

as initialization . Similarly , Java supports a concept called finalization , which is just opposite

to initialization.We know that Java run-time is an automatic garbage collecting system. It

automatically frees up the memory resources used by the objects. But objects may hold other

non-object resources such as file descriptors or window system fonts. The garbage collector

cannot free these resources.In order to free these resources we must use a finalizer method.

This is similar to destructors in c++.

The finalizer method is simply finalize() and can be added to any classes.Java calls that method

whenever it is about to reclaim the space for that object.

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

ABSTRACT METHODS AND CLASSES

Java allows us to do something that is exactly opposite to final.That is , we can indicate that a

method must always be redefined in a subclass,thus making overriding compulsory.

Example

abstract class shape

{

………

……..

abstract void draw();

…………

}

Conditions:

We cannot use abstract classes to instantiate objects directly.

Example

shape s = new shape(); // its illegal because shape is an abstract class.

The abstract methods of an abstract class must be defined in its subclass.

We cannot declare abstract constructors or abstract static methods.
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Visibility Control

In some situations to restrict the access to certain variables and methods from outside the

calss. we can achieve this in Java by applying visibility modifiers to the instance variables

and methods.The visibility modifiers are also known as access modifiers.

Java provides three type of visibility modifiers: public , private and protected.

Public Access

Private Access

Protected Access

Friendly Access

Private protected Access

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Managing Errors and Exceptions
Types of Errors

Errors may broadly be classified into two categories:

•Compile-time errors

•Run time errors

Compile –time errors

All syntax errors will be detected and displayed by the java compiler and therefore

these errors are known as compile-time errors.Whenever the compiler displays an

error, it will not create the .class file.

The most common problems are:

Missing semicolons

Missing (or miss match of) brackets in classes and methods

Misspelling of identifiers and keywords

Missing double quotes in strings

Use of undeclared variables

Incompatible types in assignments/initialization

Bad references to objects

Use of = in place of == operator

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Run –Time Errors

Some times, a program may compile successfully creating the

.class file but may not run properly.Such program produce

wrong results due to wrong logic or may terminate due to

errors such as stack overflow.

Most common run time errors

•Dividing an integer by zero.

•Accessing an element that is out of the bounds of an array

•Passing a parameter that is not in a valid range or value for a

method

Exceptions

An exception is a condition that is caused by a run-time error

in the program. When the java interpreter encounters an error

such as dividing an integer by zero, it creates an exception

object and throws it.
AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

The mechanism suggests incorporation of a separate error handling code

that performs the following tasks;

1.Find the problem(Hit the Exception)

2.Inform that an error has occurred(Throw the exception)

3.Receive the error information(Catch the exception)

4.Take corrective actions(Handle the exception)

Common java exceptions
Exception Type Cause of exception

ArithmeticException : Caused by math errors such as division by zero

ArrayIndexOutOfBoundsException :Caused by bad array indexes

IOException : Caused by general I/O failures.

Syntax of Exception Handling Code

try

{

Statement; // generates an exception

}

Catch (Exception-type e)

{

Statement; // processes the exception

} AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Try Block

Statement that causes an exception

Catch Block

Statement that handles the exception

Exception

object

creator

Exception

handler

Throws

Exception object

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Interfaces : Multiple Inheritance

class A extends B extends C

{

…………….

…………….

}

An interface is basically a kind of class. interfaces contain

methods and variables but with major diferrence.The

difference is that interfaces define only abstract methods and

final fields.This means that interfaces do not specify any code

to implement these methods and data fields contain only

constants.

iterface interfacename

{

variable declaration;

methods declaration;

} AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Declaration

static final type variablename=value;

Return-type methodname(parameter_list);

Example

interface Item

{

static final int code=1001;

static final string name=“Pencil”;

void display();

}

Extending Interface

interface name2 extends name1

{

body of name2

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

Implementing Interfaces

Interfaces are used as “superclasses” whose properties are

inherited by classes.

class classname implements interface

{

Body of class name;

}

class classname extends superclass implements

interface1,interface2,….

{

Body of class name;

}

AK - DEPT.OF.INFORMATION

TECHNOLOGY- APSAC

