
P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 1

PHP & PYTHON

 - Introduction

PHP started out as a small open source project that evolved as more and more people found out

how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back in 1994.

 PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

 PHP is a server side scripting language that is embedded in HTML. It is used to manage

dynamic content, databases, session tracking, even build entire e-commerce sites.

 It is integrated with a number of popular databases, including MySQL, PostgreSQL,

Oracle, Sybase, Informix, and Microsoft SQL Server.

 PHP is pleasingly zippy in its execution, especially when compiled as an Apache module

on the Unix side. The MySQL server, once started, executes even very complex queries

with huge result sets in record-setting time.

 PHP supports a large number of major protocols such as POP3, IMAP, and LDAP. PHP4

added support for Java and distributed object architectures (COM and CORBA), making

n-tier development a possibility for the first time.

 PHP is forgiving: PHP language tries to be as forgiving as possible.

 PHP Syntax is C-Like.

Common uses of PHP

 PHP performs system functions, i.e. from files on a system it can create, open, read, write,

and close them.

 PHP can handle forms, i.e. gather data from files, save data to a file, through email you

can send data, return data to the user.

 You add, delete, modify elements within your database through PHP.

 Access cookies variables and set cookies.

 Using PHP, you can restrict users to access some pages of your website.

 It can encrypt data.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 2

Characteristics of PHP

Five important characteristics make PHP's practical nature possible −

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

"Hello World" Script in PHP

To get a feel for PHP, first start with simple PHP scripts. Since "Hello, World!" is an essential

example, first we will create a friendly little "Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in amongst your normal

HTML (or XHTML if you're cutting-edge) you'll have PHP statements like this −

<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <?php echo "Hello, World!";?>

 </body>

</html>

It will produce following result −

Hello, World!

If you examine the HTML output of the above example, you'll notice that the PHP code is not

present in the file sent from the server to your Web browser. All of the PHP present in the Web

page is processed and stripped from the page; the only thing returned to the client from the Web

server is pure HTML output.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 3

All PHP code must be included inside one of the three special markup tags ate are recognised by

the PHP Parser.

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language="php"> PHP code goes here </script>

A most common tag is the <?php...?> and we will also use the same tag in our tutorial.

ENVIRONMENT SETUP

In order to develop and run PHP Web pages three vital components need to be installed on your

computer system.

 Web Server − PHP will work with virtually all Web Server software, including

Microsoft's Internet Information Server (IIS) but then most often used is freely available

Apache Server. Download Apache for free here − https://httpd.apache.org/download.cgi

 Database − PHP will work with virtually all database software, including Oracle and

Sybase but most commonly used is freely available MySQL database. Download MySQL

for free here − https://www.mysql.com/downloads/

 PHP Parser − In order to process PHP script instructions a parser must be installed to

generate HTML output that can be sent to the Web Browser. This tutorial will guide you

how to install PHP parser on your computer.

PHP Parser Installation

Before you proceed it is important to make sure that you have proper environment setup on your

machine to develop your web programs using PHP.

Type the following address into your browser's address box.

http://127.0.0.1/info.php

If this displays a page showing your PHP installation related information then it means you have

PHP and Webserver installed properly. Otherwise you have to follow given procedure to install

PHP on your computer.

https://httpd.apache.org/download.cgi
https://www.mysql.com/downloads/

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 4

This section will guide you to install and configure PHP over the following four platforms −

 PHP Installation on Linux or Unix with Apache

 PHP Installation on Mac OS X with Apache

 PHP Installation on Windows NT/2000/XP with IIS

 PHP Installation on Windows NT/2000/XP with Apache

Apache Configuration

If you are using Apache as a Web Server then this section will guide you to edit Apache

Configuration Files.

Just Check it here − PHP Configuration in Apache Server

PHP.INI File Configuration

The PHP configuration file, php.ini, is the final and most immediate way to affect PHP's

functionality.

Just Check it here − PHP.INI File Configuration

Windows IIS Configuration

To configure IIS on your Windows machine you can refer your IIS Reference Manual shipped

along with IIS.

https://www.tutorialspoint.com/php/php_installation_linux.htm
https://www.tutorialspoint.com/php/php_installation_mac.htm
https://www.tutorialspoint.com/php/php_installation_windows_iis.htm
https://www.tutorialspoint.com/php/php_installation_windows_apache.htm
https://www.tutorialspoint.com/php/php_apache_configuration.htm
https://www.tutorialspoint.com/php/php_ini_configuration.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 5

PHP - Syntax Overview

Canonical PHP tags

The most universally effective PHP tag style is −

<?php...?>

Commenting PHP Code

A comment is the portion of a program that exists only for the human reader and stripped out

before displaying the programs result. There are two commenting formats in PHP −

Single-line comments − They are generally used for short explanations or notes relevant to the

local code. Here are the examples of single line comments.

<?

 # This is a comment, and

 # This is the second line of the comment

 // This is a comment too. Each style comments only

 print "An example with single line comments";

?>

Multi-lines printing − Here are the examples to print multiple lines in a single print statement −

<?

 # First Example

 print <<<END

 This uses the "here document" syntax to output

 multiple lines with $variable interpolation. Note

 that the here document terminator must appear on a

 line with just a semicolon no extra whitespace!

 END;

 # Second Example

 print "This spans

 multiple lines. The newlines will be

 output as well"; ?>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 6

Multi-lines comments − They are generally used to provide pseudocode algorithms and more

detailed explanations when necessary. The multiline style of commenting is the same as in C.

Here are the example of multi lines comments.

<?

 /* This is a comment with multiline

 Author : Mohammad Mohtashim

 Purpose: Multiline Comments Demo

 Subject: PHP

 */

 print "An example with multi line comments";

?>

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,

and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many whitespace characters

you have in a row.one whitespace character is the same as many such characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable

$four is equivalent −

$four = 2 + 2; // single spaces

$four <tab>=<tab2<tab>+<tab>2 ; // spaces and tabs

$four =

2+

2; // multiple lines

PHP is case sensitive

Yeah it is true that PHP is a case sensitive language. Try out following example −

<html>

 <body>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 7

 <?php

 $capital = 67;

 print("Variable capital is $capital
");

 print("Variable CaPiTaL is $CaPiTaL
");

 ?>

 </body>

</html>

This will produce the following result −

Variable capital is 67

Variable CaPiTaL is

Statements are expressions terminated by semicolons

A statement in PHP is any expression that is followed by a semicolon (;).Any sequence of valid

PHP statements that is enclosed by the PHP tags is a valid PHP program. Here is a typical

statement in PHP, which in this case assigns a string of characters to a variable called $greeting

−

$greeting = "Welcome to PHP!";

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159), strings

(.two.), variables ($two), constants (TRUE), and the special words that make up the syntax of

PHP itself like if, else, while, for and so forth

Braces make blocks

Although statements cannot be combined like expressions, you can always put a sequence of

statements anywhere a statement can go by enclosing them in a set of curly braces.

Here both statements are equivalent −

if (3 == 2 + 1)

 print("Good - I haven't totally lost my mind.
");

if (3 == 2 + 1) {

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 8

 print("Good - I haven't totally");

 print("lost my mind.
");

}

Running PHP Script from Command Prompt

Yes you can run your PHP script on your command prompt. Assuming you have following

content in test.php file

<?php

 echo "Hello PHP!!!!!";

?>

Now run this script as command prompt as follows −

$ php test.php

It will produce the following result −

Hello PHP!!!!!

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 9

VARIABLE / DATA TYPES

The main way to store information in the middle of a PHP program is by using a variable.

Here are the most important things to know about variables in PHP.

 All variables in PHP are denoted with a leading dollar sign ($).

 The value of a variable is the value of its most recent assignment.

 Variables are assigned with the = operator, with the variable on the left-hand side and the

expression to be evaluated on the right.

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have intrinsic types - a variable does not know in advance whether

it will be used to store a number or a string of characters.

 Variables used before they are assigned have default values.

 PHP does a good job of automatically converting types from one to another when

necessary.

 PHP variables are Perl-like.

Variable Scope

Scope can be defined as the range of availability a variable has to the program in which it is

declared. PHP variables can be one of four scope types −

 Local variables

 Function parameters

 Global variables

 Static variables

Variable Naming

Rules for naming a variable is −

 Variable names must begin with a letter or underscore character.

https://www.tutorialspoint.com/php/php_local_variables.htm
https://www.tutorialspoint.com/php/php_function_parameters.htm
https://www.tutorialspoint.com/php/php_global_variables.htm
https://www.tutorialspoint.com/php/php_static_variables.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 10

 A variable name can consist of numbers, letters, underscores but you cannot use characters

like + , - , % , (,) . & , etc

There is no size limit for variables.

PHP has a total of eight data types which we use to construct our variables −

 Integers − are whole numbers, without a decimal point, like 4195.

 Doubles − are floating-point numbers, like 3.14159 or 49.1.

 Booleans − have only two possible values either true or false.

 NULL − is a special type that only has one value: NULL.

 Strings − are sequences of characters, like 'PHP supports string operations.'

 Arrays − are named and indexed collections of other values.

 Objects − are instances of programmer-defined classes, which can package up both other

kinds of values and functions that are specific to the class.

 Resources − are special variables that hold references to resources external to PHP (such

as database connections).

The first five are simple types, and the next two (arrays and objects) are compound - the compound

types can package up other arbitrary values of arbitrary type, whereas the simple types cannot.

We will explain only simple data type in this chapters. Array and Objects will be explained

separately.

Integers

They are whole numbers, without a decimal point, like 4195. They are the simplest type .they

correspond to simple whole numbers, both positive and negative. Integers can be assigned to

variables, or they can be used in expressions, like so −

$int_var = 12345;

$another_int = -12345 + 12345;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 11

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format. Decimal

format is the default, octal integers are specified with a leading 0, and hexadecimals have a leading

0x.

For most common platforms, the largest integer is (2**31 . 1) (or 2,147,483,647), and the smallest

(most negative) integer is . (2**31 . 1) (or .2,147,483,647).

Doubles

They like 3.14159 or 49.1. By default, doubles print with the minimum number of decimal places

needed. For example, the code −

<?php

 $many = 2.2888800;

 $many_2 = 2.2111200;

 $few = $many + $many_2;

 print("$many + $many_2 = $few
");

?>

It produces the following browser output −

2.28888 + 2.21112 = 4.5

Boolean

They have only two possible values either true or false. PHP provides a couple of constants

especially for use as Booleans: TRUE and FALSE, which can be used like so −

if (TRUE)

 print("This will always print
");

else

 print("This will never print
");

Interpreting other types as Booleans

Here are the rules for determine the "truth" of any value not already of the Boolean type −

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 12

 If the value is a number, it is false if exactly equal to zero and true otherwise.

 If the value is a string, it is false if the string is empty (has zero characters) or is the string

"0", and is true otherwise.

 Values of type NULL are always false.

 If the value is an array, it is false if it contains no other values, and it is true otherwise. For

an object, containing a value means having a member variable that has been assigned a

value.

 Valid resources are true (although some functions that return resources when they are

successful will return FALSE when unsuccessful).

 Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is used in a

Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

NULL

NULL is a special type that only has one value: NULL. To give a variable the NULL value,

simply assign it like this −

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive; you

could just as well have typed −

$my_var = null;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 13

A variable that has been assigned NULL has the following properties −

 It evaluates to FALSE in a Boolean context.

 It returns FALSE when tested with IsSet() function.

STRINGS

They are sequences of characters, like "PHP supports string operations". Following are valid

examples of string

$string_1 = "This is a string in double quotes";

$string_2 = 'This is a somewhat longer, singly quoted string';

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace variables

with their values as well as specially interpreting certain character sequences.

<?php

 $variable = "name";

 $literally = 'My $variable will not print!';

 print($literally);

 print "
";

 $literally = "My $variable will print!";

 print($literally);

?>

This will produce following result −

My $variable will not print!\n

My name will print

There are no artificial limits on string length - within the bounds of available memory, you ought

to be able to make arbitrarily long strings.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 14

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP −

 Certain character sequences beginning with backslash (\) are replaced with special

characters

 Variable names (starting with $) are replaced with string representations of their values.

The escape-sequence replacements are −

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

CONSTANTS TYPES

A constant is a name or an identifier for a simple value. A constant value cannot change during

the execution of the script. By default, a constant is case-sensitive. By convention, constant

identifiers are always uppercase. A constant name starts with a letter or underscore, followed by

any number of letters, numbers, or underscores. If you have defined a constant, it can never be

changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a constant, you

have to simply specifying its name. Unlike with variables, you do not need to have a constant

with a $. You can also use the function constant() to read a constant's value if you wish to obtain

the constant's name dynamically.

constant() function

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not know its name, i.e. It

is stored in a variable or returned by a function.

constant() example

<?php

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 15

 define("MINSIZE", 50);

 echo MINSIZE;

 echo constant("MINSIZE"); // same thing as the previous line

?>

Only scalar data (boolean, integer, float and string) can be contained in constants.

Differences between constants and variables are

 There is no need to write a dollar sign ($) before a constant, where as in Variable one has

to write a dollar sign.

 Constants cannot be defined by simple assignment, they may only be defined using the

define() function.

 Constants may be defined and accessed anywhere without regard to variable scoping rules.

 Once the Constants have been set, may not be redefined or undefined.

Valid and invalid constant names

// Valid constant names

define("ONE", "first thing");

define("TWO2", "second thing");

define("THREE_3", "third thing");

// Invalid constant names

define("2TWO", "second thing");

define("__THREE__", "third value");

PHP Magic constants

PHP provides a large number of predefined constants to any script which it runs.

There are five magical constants that change depending on where they are used. For example, the

value of __LINE__ depends on the line that it's used on in your script. These special constants

are case-insensitive and are as follows −

A few "magical" PHP constants ate given below −

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 16

Sr.No Name & Description

1 __LINE__

The current line number of the file.

2 __FILE__

The full path and filename of the file. If used inside an include,the name of the

included file is returned. Since PHP 4.0.2, __FILE__ always contains an absolute

path whereas in older versions it contained relative path under some circumstances.

3 __FUNCTION__

The function name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the

function name as it was declared (case-sensitive). In PHP 4 its value is always

lowercased.

4 __CLASS__

The class name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the class

name as it was declared (case-sensitive). In PHP 4 its value is always lowercased.

5 __METHOD__

The class method name. (Added in PHP 5.0.0) The method name is returned as it

was declared (case-sensitive).

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 17

OPERATOR TYPES

What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and

5 are called operands and + is called operator. PHP language supports following type of operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Lets have a look on all operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by PHP language −

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the

first

A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

https://www.tutorialspoint.com/php/php_arithmatic_operators_examples.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 18

++ Increment operator, increases integer

value by one

A++ will give 11

-- Decrement operator, decreases integer

value by one

A-- will give 9

Comparison Operators

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

== Checks if the value of two operands are equal or not, if

yes then condition becomes true.

(A == B) is not true.

!= Checks if the value of two operands are equal or not, if

values are not equal then condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than the

value of right operand, if yes then condition becomes

true.

(A > B) is not true.

< Checks if the value of left operand is less than the value

of right operand, if yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or

equal to the value of right operand, if yes then condition

becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or equal to

the value of right operand, if yes then condition becomes

true.

(A <= B) is true.

https://www.tutorialspoint.com/php/php_comparison_operators_examples.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 19

Logical Operators

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

and Called Logical AND operator. If both

the operands are true then condition

becomes true.

(A and B) is true.

or Called Logical OR Operator. If any of

the two operands are non zero then

condition becomes true.

(A or B) is true.

&& Called Logical AND operator. If both

the operands are non zero then

condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of

the two operands are non zero then

condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its

operand. If a condition is true then

Logical NOT operator will make

false.

!(A && B) is false.

https://www.tutorialspoint.com/php/php_logical_operators_examples.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 20

Assignment Operators

There are following assignment operators supported by PHP language −

Show Examples

Operator Description Example

= Simple assignment operator,

Assigns values from right side

operands to left side operand

C = A + B will assign value of A + B into

C

+= Add AND assignment operator,

It adds right operand to the left

operand and assign the result to

left operand

C += A is equivalent to C = C + A

-= Subtract AND assignment

operator, It subtracts right

operand from the left operand

and assign the result to left

operand

C -= A is equivalent to C = C - A

*= Multiply AND assignment

operator, It multiplies right

operand with the left operand and

assign the result to left operand

C *= A is equivalent to C = C * A

/= Divide AND assignment

operator, It divides left operand

with the right operand and assign

the result to left operand

C /= A is equivalent to C = C / A

%= Modulus AND assignment

operator, It takes modulus using

two operands and assign the

result to left operand

C %= A is equivalent to C = C % A

https://www.tutorialspoint.com/php/php_assignment_operators_examples.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 21

Conditional Operator

There is one more operator called conditional operator. This first evaluates an expression for a

true or false value and then execute one of the two given statements depending upon the result of

the evaluation. The conditional operator has this syntax −

Show Examples

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X :

Otherwise value Y

Operators Categories

All the operators we have discussed above can be categorised into following categories −

 Unary prefix operators, which precede a single operand.

 Binary operators, which take two operands and perform a variety of arithmetic and logical

operations.

 The conditional operator (a ternary operator), which takes three operands and evaluates

either the second or third expression, depending on the evaluation of the first expression.

 Assignment operators, which assign a value to a variable.

Precedence of PHP Operators

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator −

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher precedence

than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

https://www.tutorialspoint.com/php/php_conditional_operator_examples.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 22

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 23

DECISION MAKING

The if, elseif ...else and switch statements are used to take decision based on the different

condition.

You can use conditional statements in your code to make your decisions. PHP supports following

three decision making statements −

 if...else statement − use this statement if you want to execute a set of code when a

condition is true and another if the condition is not true

 elseif statement − is used with the if...else statement to execute a set of code if one of the

several condition is true

 switch statement − is used if you want to select one of many blocks of code to be

executed, use the Switch statement. The switch statement is used to avoid long blocks of

if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false,

use the if....else statement.

Syntax

if (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 24

Example

The following example will output "Have a nice weekend!" if the current day is Friday,

Otherwise, it will output "Have a nice day!":

<html>

 <body>

 <?php

 $d = date("D");

 if ($d == "Fri")

 echo "Have a nice weekend!";

 else

 echo "Have a nice day!";

 ?>

 </body>

</html>

It will produce the following result −

Have a nice day!

The ElseIf Statement

If you want to execute some code if one of the several conditions are true use the elseif statement

Syntax

if (condition)

 code to be executed if condition is true;

elseif (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 25

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and "Have

a nice Sunday!" if the current day is Sunday. Otherwise, it will output "Have a nice day!" −

<html>

 <body>

 <?php

 $d = date("D");

 if ($d == "Fri")

 echo "Have a nice weekend!";

 elseif ($d == "Sun")

 echo "Have a nice Sunday!";

 else

 echo "Have a nice day!";

 ?>

 </body>

</html>

It will produce the following result −

Have a nice day!

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 26

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

switch (expression){

 case label1:

 code to be executed if expression = label1;

 break;

 case label2:

 code to be executed if expression = label2;

 break;

 default:

 code to be executed

 if expression is different

 from both label1 and label2;

}

Example

The switch statement works in an unusual way. First it evaluates given expression then seeks a

lable to match the resulting value. If a matching value is found then the code associated with the

matching label will be executed or if none of the lable matches then statement will execute any

specified default code.

<html>

 <body>

 <?php

 $d = date("D");

 switch ($d){

 case "Mon":

 echo "Today is Monday";

 break;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 27

 case "Tue":

 echo "Today is Tuesday";

 break;

 case "Wed":

 echo "Today is Wednesday";

 break;

 case "Thu":

 echo "Today is Thursday";

 break;

 case "Fri":

 echo "Today is Friday";

 break;

 case "Sat":

 echo "Today is Saturday";

 break;

 case "Sun":

 echo "Today is Sunday";

 break;

 default:

 echo "Wonder which day is this ?";

 }

 ?>

 </body>

</html>

It will produce the following result −

Today is Monday

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 28

 LOOP TYPES

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

 for − loops through a block of code a specified number of times.

 while − loops through a block of code if and as long as a specified condition is true.

 do...while − loops through a block of code once, and then repeats the loop as long as a

special condition is true.

 foreach − loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement or a

block of statements.

Syntax

for (initialization; condition; increment){

 code to be executed;

}

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 29

The initializer is used to set the start value for the counter of the number of loop iterations. A

variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two variables on

each pass of the loop −

<html>

 <body>

 <?php

 $a = 0;

 $b = 0;

 for($i = 0; $i<5; $i++) {

 $a += 10;

 $b += 5;

 }

 echo ("At the end of the loop a = $a and b = $b");

 ?>

 </body>

</html>

This will produce the following result −

At the end of the loop a = 50 and b = 25

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 30

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed the

test expression will again be evaluated and the loop will continue until the test expression is found

to be false.

Syntax

while (condition) {

 code to be executed;

}

Example

This example decrements a variable value on each iteration of the loop and the counter increments

until it reaches 10 when the evaluation is false and the loop ends.

<html>

 <body>

 <?php

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 31

 $i = 0;

 $num = 50;

 while($i < 10) {

 $num--;

 $i++;

 }

 echo ("Loop stopped at i = $i and num = $num");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop

as long as a condition is true.

Syntax

do {

 code to be executed;

}

while (condition);

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10 −

<html>

 <body>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 32

 <?php

 $i = 0;

 $num = 0;

 do {

 $i++;

 }

 while($i < 10);

 echo ("Loop stopped at i = $i");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 10

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current array

element is assigned to $value and the array pointer is moved by one and in the next pass next

element will be processed.

Syntax

foreach (array as value) {

 code to be executed;

}

Example

Try out following example to list out the values of an array.

<html>

 <body>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 33

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. If gives you full control and whenever

you want to exit from the loop you can come out. After coming out of a loop immediate statement

to the loop will be executed.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 34

Example

In the following example condition test becomes true when the counter value reaches 3 and loop

terminates.

<html>

 <body>

 <?php

 $i = 0;

 while($i < 10) {

 $i++;

 if($i == 3)break;

 }

 echo ("Loop stopped at i = $i");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 3

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not terminate

the loop.

Just like the break statement the continue statement is situated inside the statement block

containing the code that the loop executes, preceded by a conditional test. For the pass

encountering continue statement, rest of the loop code is skipped and next pass starts.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 35

Example

In the following example loop prints the value of array but for which condition becomes true it

just skip the code and next value is printed.

<html>

 <body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 if($value == 3)continue;

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 4

Value is 5

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 36

Functions

PHP functions are similar to other programming languages. A function is a piece of code which

takes one more input in the form of parameter and does some processing and returns a value.

There are two parts which should be clear to you −

 Creating a PHP Function

 Calling a PHP Function

In fact you hardly need to create your own PHP function because there are already more than

1000 of built-in library functions created for different area and you just need to call them

according to your requirement.

Please refer to PHP Function Reference for a complete set of useful functions.

Creating PHP Function

Its very easy to create your own PHP function. Suppose you want to create a PHP function which

will simply write a simple message on your browser when you will call it. Following example

creates a function called writeMessage() and then calls it just after creating it.

Note that while creating a function its name should start with keyword function and all the PHP

code should be put inside { and } braces as shown in the following example below −

<html>

 <head>

 <title>Writing PHP Function</title>

 </head>

 <body>

 <?php

 /* Defining a PHP Function */

 function writeMessage() {

 echo "You are really a nice person, Have a nice time!";

 }

https://www.tutorialspoint.com/php/php_function_reference.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 37

 /* Calling a PHP Function */

 writeMessage();

 ?>

 </body>

</html>

This will display following result −

You are really a nice person, Have a nice time!

PHP Functions with Parameters

PHP gives you option to pass your parameters inside a function. You can pass as many as

parameters your like. These parameters work like variables inside your function. Following

example takes two integer parameters and add them together and then print them.

<html>

 <head>

 <title>Writing PHP Function with Parameters</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 echo "Sum of the two numbers is : $sum";

 }

 addFunction(10, 20);

 ?>

 </body>

</html>

This will display following result −

Sum of the two numbers is : 30

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 38

Passing Arguments by Reference

It is possible to pass arguments to functions by reference. This means that a reference to the

variable is manipulated by the function rather than a copy of the variable's value.

Any changes made to an argument in these cases will change the value of the original variable.

You can pass an argument by reference by adding an ampersand to the variable name in either

the function call or the function definition.

Following example depicts both the cases.

<html>

 <head>

 <title>Passing Argument by Reference</title>

 </head>

 <body>

 <?php

 function addFive($num) {

 $num += 5;

 }

 function addSix(&$num) {

 $num += 6;

 }

 $orignum = 10;

 addFive($orignum);

 echo "Original Value is $orignum
";

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 39

 addSix($orignum);

 echo "Original Value is $orignum
";

 ?>

 </body>

</html>

This will display following result −

Original Value is 10

Original Value is 16

PHP Functions returning value

A function can return a value using the return statement in conjunction with a value or object.

return stops the execution of the function and sends the value back to the calling code.

You can return more than one value from a function using return array(1,2,3,4).

Following example takes two integer parameters and add them together and then returns their

sum to the calling program. Note that return keyword is used to return a value from a function.

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 return $sum;

 }

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 40

 $return_value = addFunction(10, 20);

 echo "Returned value from the function : $return_value";

 ?>

 </body>

</html>

This will display following result −

Returned value from the function : 30

Setting Default Values for Function Parameters

You can set a parameter to have a default value if the function's caller doesn't pass it.

Following function prints NULL in case use does not pass any value to this function.

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function printMe($param = NULL) {

 print $param;

 }

 printMe("This is test");

 printMe();

 ?>

 </body>

</html>

This will produce following result −

This is test

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 41

Dynamic Function Calls

It is possible to assign function names as strings to variables and then treat these variables exactly

as you would the function name itself. Following example depicts this behaviour.

<html>

 <head>

 <title>Dynamic Function Calls</title>

 </head>

 <body>

 <?php

 function sayHello() {

 echo "Hello
";

 }

 $function_holder = "sayHello";

 $function_holder();

 ?>

 </body>

</html>

This will display following result −

Hello

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 42

Arrays

 An array is a data structure that stores one or more similar type of values in a single value.

For example if you want to store 100 numbers then instead of defining 100 variables its easy to

define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c which is

called array index.

 Numeric array − An array with a numeric index. Values are stored and accessed in linear

fashion.

 Associative array − An array with strings as index. This stores element values in

association with key values rather than in a strict linear index order.

 Multidimensional array − An array containing one or more arrays and values are

accessed using multiple indices

NOTE − Built-in array functions is given in function reference PHP Array Functions

Numeric Array

These arrays can store numbers, strings and any object but their index will be represented by

numbers. By default array index starts from zero.

Example

Following is the example showing how to create and access numeric arrays.

Here we have used array() function to create array. This function is explained in function

reference.

<html>

 <body>

 <?php

 /* First method to create array. */

 $numbers = array(1, 2, 3, 4, 5);

 foreach($numbers as $value) {

https://www.tutorialspoint.com/php/php_array_functions.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 43

 echo "Value is $value
";

 }

 /* Second method to create array. */

 $numbers[0] = "one";

 $numbers[1] = "two";

 $numbers[2] = "three";

 $numbers[3] = "four";

 $numbers[4] = "five";

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Value is one

Value is two

Value is three

Value is four

Value is five

Associative Arrays

The associative arrays are very similar to numeric arrays in term of functionality but they are

different in terms of their index. Associative array will have their index as string so that you can

establish a strong association between key and values.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 44

To store the salaries of employees in an array, a numerically indexed array would not be the best

choice. Instead, we could use the employees names as the keys in our associative array, and the

value would be their respective salary.

NOTE − Don't keep associative array inside double quote while printing otherwise it would not

return any value.

Example

<html>

 <body>

 <?php

 /* First method to associate create array. */

 $salaries = array("mohammad" => 2000, "qadir" => 1000, "zara" => 500);

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 /* Second method to create array. */

 $salaries['mohammad'] = "high";

 $salaries['qadir'] = "medium";

 $salaries['zara'] = "low";

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 ?>

 </body>

</html>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 45

This will produce the following result −

Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each element

in the sub-array can be an array, and so on. Values in the multi-dimensional array are accessed

using multiple index.

Example

In this example we create a two dimensional array to store marks of three students in three subjects

−

This example is an associative array, you can create numeric array in the same fashion.

<html>

 <body>

 <?php

 $marks = array(

 "mohammad" => array (

 "physics" => 35,

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

),

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 46

 "zara" => array (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

 ?>

 </body>

</html>

This will produce the following result −

Marks for mohammad in physics : 35

Marks for qadir in maths : 32

Marks for zara in chemistry : 39

Strings

They are sequences of characters, like "PHP supports string operations".

NOTE − Built-in string functions is given in function reference PHP String Functions

Following are valid examples of string

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

http://in.php.net/manual/en/ref.strings.php

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 47

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace variables

with their values as well as specially interpreting certain character sequences.

<?php

 $variable = "name";

 $literally = 'My $variable will not print!\\n';

 print($literally);

 print "
";

 $literally = "My $variable will print!\\n";

 print($literally);

?>

This will produce the following result −

My $variable will not print!\n

My name will print

There are no artificial limits on string length - within the bounds of available memory, you ought

to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP −

 Certain character sequences beginning with backslash (\) are replaced with special

characters

 Variable names (starting with $) are replaced with string representations of their values.

The escape-sequence replacements are −

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 48

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator −

<?php

 $string1="Hello World";

 $string2="1234";

 echo $string1 . " " . $string2;

?>

This will produce the following result −

Hello World 1234

If we look at the code above you see that we used the concatenation operator two times. This is

because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty space, to

separate the two variables.

Using the strlen() function

The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!":

<?php

 echo strlen("Hello world!");

?>

This will produce the following result −

12

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 49

The length of a string is often used in loops or other functions, when it is important to know when

the string ends. (i.e. in a loop, we would want to stop the loop after the last character in the string)

Using the strpos() function

The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If no

match is found, it will return FALSE.

Let's see if we can find the string "world" in our string −

<?php

 echo strpos("Hello world!","world");

?>

This will produce the following result −

 6

As you see the position of the string "world" in our string is position 6. The reason that it is 6, and

not 7, is that the first position in the string is 0, and not 1.

Regular Expressions

Regular expressions are nothing more than a sequence or pattern of characters itself. They provide

the foundation for pattern-matching functionality.

Using regular expression you can search a particular string inside a another string, you can replace

one string by another string and you can split a string into many chunks.

PHP offers functions specific to two sets of regular expression functions, each corresponding to

a certain type of regular expression. You can use any of them based on your comfort.

 POSIX Regular Expressions

 PERL Style Regular Expressions

POSIX Regular Expressions

The structure of a POSIX regular expression is not dissimilar to that of a typical arithmetic

expression: various elements (operators) are combined to form more complex expressions.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 50

The simplest regular expression is one that matches a single character, such as g, inside strings

such as g, haggle, or bag.

Lets give explanation for few concepts being used in POSIX regular expression. After that we

will introduce you with regular expression related functions.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions. They are

used to find a range of characters.

Sr.No Expression & Description

1 [0-9]

It matches any decimal digit from 0 through 9.

2 [a-z]

It matches any character from lower-case a through lowercase z.

3 [A-Z]

It matches any character from uppercase A through uppercase Z.

4 [a-Z]

It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match any decimal

digit ranging from 0 through 3, or the range [b-v] to match any lowercase character ranging from

b through v.

Quantifiers

The frequency or position of bracketed character sequences and single characters can be denoted

by a special character. Each special character having a specific connotation. The +, *, ?, {int.

range}, and $ flags all follow a character sequence.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 51

Sr.No Expression & Description

1 p+

It matches any string containing at least one p.

2 p*

It matches any string containing zero or more p's.

3 p?

It matches any string containing zero or more p's. This is just an alternative way

to use p*.

4 p{N}

It matches any string containing a sequence of N p's

5 p{2,3}

It matches any string containing a sequence of two or three p's.

6 p{2, }

It matches any string containing a sequence of at least two p's.

7 p$

It matches any string with p at the end of it.

8 ^p

It matches any string with p at the beginning of it.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 52

Examples

Following examples will clear your concepts about matching characters.

Sr.No Expression & Description

1 [^a-zA-Z]

It matches any string not containing any of the characters ranging from a through

z and A through Z.

2 p.p -It matches any string containing p, followed by any character, in turn followed

by another p.

3 ^.{2}$ -It matches any string containing exactly two characters.

4 (.*) -It matches any string enclosed within and .

5 p(hp)*

It matches any string containing a p followed by zero or more instances of the

sequence php.

Predefined Character Ranges

For your programming convenience several predefined character ranges, also known as character

classes, are available. Character classes specify an entire range of characters, for example, the

alphabet or an integer set −

Sr.No Expression & Description

1 [[:alpha:]]

It matches any string containing alphabetic characters aA through zZ.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 53

2 [[:digit:]]

It matches any string containing numerical digits 0 through 9.

3 [[:alnum:]]

It matches any string containing alphanumeric characters aA through zZ and 0

through 9.

4 [[:space:]]

It matches any string containing a space.

PHP's Regexp POSIX Functions

PHP currently offers seven functions for searching strings using POSIX-style regular expressions

Sr.No Function & Description

1 ereg() The ereg() function searches a string specified by string for a string

specified by pattern, returning true if the pattern is found, and false otherwise.

2 ereg_replace() The ereg_replace() function searches for string specified by

pattern and replaces pattern with replacement if found.

3 eregi() The eregi() function searches throughout a string specified by pattern for

a string specified by string. The search is not case sensitive.

4 eregi_replace() The eregi_replace() function operates exactly like ereg_replace(),

except that the search for pattern in string is not case sensitive.

5 split() The split() function will divide a string into various elements, the

boundaries of each element based on the occurrence of pattern in string.

6 spliti()

The spliti() function operates exactly in the same manner as its sibling split(),

except that it is not case sensitive.

https://www.tutorialspoint.com/php/php_ereg.htm
https://www.tutorialspoint.com/php/php_ereg_replace.htm
https://www.tutorialspoint.com/php/php_eregi.htm
https://www.tutorialspoint.com/php/php_eregi_replace.htm
https://www.tutorialspoint.com/php/php_split.htm
https://www.tutorialspoint.com/php/php_spliti.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 54

7 sql_regcase()

The sql_regcase() function can be thought of as a utility function, converting each

character in the input parameter string into a bracketed expression containing two

characters.

PERL Style Regular Expressions

Perl-style regular expressions are similar to their POSIX counterparts. The POSIX syntax can be

used almost interchangeably with the Perl-style regular expression functions. In fact, you can use

any of the quantifiers introduced in the previous POSIX section. Lets give explanation for few

concepts being used in PERL regular expressions. After that we will introduce you wih regular

expression related functions.

Meta characters

A meta character is simply an alphabetical character preceded by a backslash that acts to give the

combination a special meaning.

For instance, you can search for large money sums using the '\d' meta character: /([\d]+)000/,

Here \d will search for any string of numerical character.Following is the list of meta characters

which can be used in PERL Style Regular Expressions.

Character Description
. a single character

\s a whitespace character (space, tab, newline)

\S non-whitespace character

\d a digit (0-9)

\D a non-digit

\w a word character (a-z, A-Z, 0-9, _)

\W a non-word character

[aeiou] matches a single character in the given set

[^aeiou] matches a single character outside the given set

(foo|bar|baz) matches any of the alternatives specified

Modifiers

Several modifiers are available that can make your work with regexps much easier, like case

sensitivity, searching in multiple lines etc.

https://www.tutorialspoint.com/php/php_sql_regcase.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 55

Modifier Description
i Makes the match case insensitive

m Specifies that if the string has newline or carriage return characters, the ^ and $

operators will now

 match against a newline boundary, instead of a string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

x Allows you to use white space in the expression for clarity

g Globally finds all matches

cg Allows a search to continue even after a global match fails

PHP's Regexp PERL Compatible Functions

PHP offers following functions for searching strings using Perl-compatible regular expressions −

Sr.No Function & Description

1 preg_match() This function searches string for pattern, returning true if pattern

exists, and false otherwise.

2 preg_match_all()

The preg_match_all() function matches all occurrences of pattern in string.

3 preg_replace()

The preg_replace() function operates just like ereg_replace(), except that regular

expressions can be used in the pattern and replacement input parameters.

4 preg_split()

The preg_split() function operates exactly like split(), except that regular

expressions are accepted as input parameters for pattern.

5 preg_grep()

The preg_grep() function searches all elements of input_array, returning all

elements matching the regexp pattern.

6 preg_ quote()

Quote regular expression characters

https://www.tutorialspoint.com/php/php_preg_match.htm
https://www.tutorialspoint.com/php/php_preg_match_all.htm
https://www.tutorialspoint.com/php/php_preg_replace.htm
https://www.tutorialspoint.com/php/php_preg_split.htm
https://www.tutorialspoint.com/php/php_preg_grep.htm
https://www.tutorialspoint.com/php/php_preg_quote.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 56

Object Oriented Programming in PHP

We can imagine our universe made of different objects like sun, earth, moon etc. Similarly we

can imagine our car made of different objects like wheel, steering, gear etc. Same way there is

object oriented programming concepts which assume everything as an object and implement a

software using different objects.

Object Oriented Concepts

Before we go in detail, lets define important terms related to Object Oriented Programming.

 Class − This is a programmer-defined data type, which includes local functions as well as

local data. You can think of a class as a template for making many instances of the same

kind (or class) of object.

 Object − An individual instance of the data structure defined by a class. You define a class

once and then make many objects that belong to it. Objects are also known as instance.

 Member Variable − These are the variables defined inside a class. This data will be

invisible to the outside of the class and can be accessed via member functions. These

variables are called attribute of the object once an object is created.

 Member function − These are the function defined inside a class and are used to access

object data.

 Inheritance − When a class is defined by inheriting existing function of a parent class

then it is called inheritance. Here child class will inherit all or few member functions and

variables of a parent class.

 Parent class − A class that is inherited from by another class. This is also called a base

class or super class.

 Child Class − A class that inherits from another class. This is also called a subclass or

derived class.

 Polymorphism − This is an object oriented concept where same function can be used for

different purposes. For example function name will remain same but it make take different

number of arguments and can do different task.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 57

 Overloading − a type of polymorphism in which some or all of operators have different

implementations depending on the types of their arguments. Similarly functions can also

be overloaded with different implementation.

 Data Abstraction − Any representation of data in which the implementation details are

hidden (abstracted).

 Encapsulation − refers to a concept where we encapsulate all the data and member

functions together to form an object.

 Constructor − refers to a special type of function which will be called automatically

whenever there is an object formation from a class.

 Destructor − refers to a special type of function which will be called automatically

whenever an object is deleted or goes out of scope.

Defining PHP Classes

The general form for defining a new class in PHP is as follows −

<?php

 class phpClass {

 var $var1;

 var $var2 = "constant string";

 function myfunc ($arg1, $arg2) {

 [..]

 }

 [..]

 }

?>

Here is the description of each line −

 The special form class, followed by the name of the class that you want to define.

 A set of braces enclosing any number of variable declarations and function definitions.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 58

 Variable declarations start with the special form var, which is followed by a conventional

$ variable name; they may also have an initial assignment to a constant value.

 Function definitions look much like standalone PHP functions but are local to the class

and will be used to set and access object data.

Example

Here is an example which defines a class of Books type −

<?php

 class Books {

 /* Member variables */

 var $price;

 var $title;

 /* Member functions */

 function setPrice($par){

 $this->price = $par;

 }

 function getPrice(){

 echo $this->price ."
";

 }

 function setTitle($par){

 $this->title = $par;

 }

 function getTitle(){

 echo $this->title ."
";

 }

 }

?>

The variable $this is a special variable and it refers to the same object ie. itself.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 59

Creating Objects in PHP

Once you defined your class, then you can create as many objects as you like of that class type.

Following is an example of how to create object using new operator.

$physics = new Books;

$maths = new Books;

$chemistry = new Books;

Here we have created three objects and these objects are independent of each other and they will

have their existence separately. Next we will see how to access member function and process

member variables.

Calling Member Functions

After creating your objects, you will be able to call member functions related to that object. One

member function will be able to process member variable of related object only.

Following example shows how to set title and prices for the three books by calling member

functions.

$physics->setTitle("Physics for High School");

$chemistry->setTitle("Advanced Chemistry");

$maths->setTitle("Algebra");

$physics->setPrice(10);

$chemistry->setPrice(15);

$maths->setPrice(7);

Now you call another member functions to get the values set by in above example −

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 60

Physics for High School

Advanced Chemistry

Algebra

10

15

7

Constructor Functions

Constructor Functions are special type of functions which are called automatically whenever an

object is created. So we take full advantage of this behaviour, by initializing many things through

constructor functions.

PHP provides a special function called __construct() to define a constructor. You can pass as

many as arguments you like into the constructor function.

Following example will create one constructor for Books class and it will initialize price and title

for the book at the time of object creation.

function __construct($par1, $par2) {

 $this->title = $par1;

 $this->price = $par2;

}

Now we don't need to call set function separately to set price and title. We can initialize these two

member variables at the time of object creation only. Check following example below −

$physics = new Books("Physics for High School", 10);

$maths = new Books ("Advanced Chemistry", 15);

$chemistry = new Books ("Algebra", 7);

/* Get those set values */

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 61

This will produce the following result −

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Destructor

Like a constructor function you can define a destructor function using function __destruct(). You

can release all the resources with-in a destructor.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by using the extends

clause. The syntax is as follows −

class Child extends Parent {

 <definition body>

}

The effect of inheritance is that the child class (or subclass or derived class) has the following

characteristics −

 Automatically has all the member variable declarations of the parent class.

 Automatically has all the same member functions as the parent, which (by default) will

work the same way as those functions do in the parent.

Following example inherit Books class and adds more functionality based on the requirement.

class Novel extends Books {

 var $publisher;

 function setPublisher($par){

 $this->publisher = $par;

 }

 function getPublisher(){

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 62

 echo $this->publisher. "
";

 }

}

Now apart from inherited functions, class Novel keeps two additional member functions.

Function Overriding

Function definitions in child classes override definitions with the same name in parent classes. In

a child class, we can modify the definition of a function inherited from parent class.

In the following example getPrice and getTitle functions are overridden to return some values.

function getPrice() {

 echo $this->price . "
";

 return $this->price;

}

function getTitle(){

 echo $this->title . "
";

 return $this->title;

}

Public Members

Unless you specify otherwise, properties and methods of a class are public. That is to say, they

may be accessed in three possible situations −

 From outside the class in which it is declared

 From within the class in which it is declared

 From within another class that implements the class in which it is declared

Till now we have seen all members as public members. If you wish to limit the accessibility of

the members of a class then you define class members as private or protected.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 63

Private members

By designating a member private, you limit its accessibility to the class in which it is declared.

The private member cannot be referred to from classes that inherit the class in which it is declared

and cannot be accessed from outside the class.

A class member can be made private by using private keyword infront of the member.

class MyClass {

 private $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 private function myPrivateFunction() {

 return("I'm not visible outside!");

 }

}

When MyClass class is inherited by another class using extends, myPublicFunction() will be

visible, as will $driver. The extending class will not have any awareness of or access to

myPrivateFunction and $car, because they are declared private.

Protected members

A protected property or method is accessible in the class in which it is declared, as well as in

classes that extend that class. Protected members are not available outside of those two kinds of

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 64

classes. A class member can be made protected by using protected keyword in front of the

member.Here is different version of MyClass −

class MyClass {

 protected $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 protected function myPrivateFunction() {

 return("I'm visible in child class!");

 }

}

Interfaces

Interfaces are defined to provide a common function names to the implementers. Different

implementors can implement those interfaces according to their requirements. You can say,

interfaces are skeletons which are implemented by developers.

As of PHP5, it is possible to define an interface, like this −

interface Mail {

 public function sendMail();

}

Then, if another class implemented that interface, like this −

class Report implements Mail {

 // sendMail() Definition goes here }

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 65

Constants

A constant is somewhat like a variable, in that it holds a value, but is really more like a function

because a constant is immutable. Once you declare a constant, it does not change.

Declaring one constant is easy, as is done in this version of MyClass −

class MyClass {

 const requiredMargin = 1.7;

 function __construct($incomingValue) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

}

In this class, requiredMargin is a constant. It is declared with the keyword const, and under no

circumstances can it be changed to anything other than 1.7. Note that the constant's name does

not have a leading $, as variable names do.

Abstract Classes

An abstract class is one that cannot be instantiated, only inherited. You declare an abstract class

with the keyword abstract, like this −

When inheriting from an abstract class, all methods marked abstract in the parent's class

declaration must be defined by the child; additionally, these methods must be defined with the

same visibility.

abstract class MyAbstractClass {

 abstract function myAbstractFunction() {

 }

}

Note that function definitions inside an abstract class must also be preceded by the keyword

abstract. It is not legal to have abstract function definitions inside a non-abstract class.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 66

Static Keyword

Declaring class members or methods as static makes them accessible without needing an

instantiation of the class. A member declared as static can not be accessed with an instantiated

class object (though a static method can).

Try out following example −

<?php

 class Foo {

 public static $my_static = 'foo';

 public function staticValue() {

 return self::$my_static;

 }

 }

 print Foo::$my_static . "\n";

 $foo = new Foo();

 print $foo->staticValue() . "\n";

?>

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from overriding a method by

prefixing the definition with final. If the class itself is being defined final then it cannot be

extended.

Following example results in Fatal error: Cannot override final method BaseClass::moreTesting()

<?php

 class BaseClass {

 public function test() {

 echo "BaseClass::test() called
";

 }

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 67

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called
";

 }

 }

 class ChildClass extends BaseClass {

 public function moreTesting() {

 echo "ChildClass::moreTesting() called
";

 }

 }

?>

Calling parent constructors

Instead of writing an entirely new constructor for the subclass, let's write it by calling the parent's

constructor explicitly and then doing whatever is necessary in addition for instantiation of the

subclass. Here's a simple example −

class Name {

 var $_firstName;

 var $_lastName;

 function Name($first_name, $last_name) {

 $this->_firstName = $first_name;

 $this->_lastName = $last_name;

 }

 function toString() {

 return($this->_lastName .", " .$this->_firstName);

 }

}

class NameSub1 extends Name {

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 68

 var $_middleInitial;

 function NameSub1($first_name, $middle_initial, $last_name) {

 Name::Name($first_name, $last_name);

 $this->_middleInitial = $middle_initial;

 }

 function toString() {

 return(Name::toString() . " " . $this->_middleInitial);

 }

}

In this example, we have a parent class (Name), which has a two-argument constructor, and a

subclass (NameSub1), which has a three-argument constructor. The constructor of NameSub1

functions by calling its parent constructor explicitly using the :: syntax (passing two of its

arguments along) and then setting an additional field. Similarly, NameSub1 defines its non

constructor toString() function in terms of the parent function that it overrides.

NOTE − A constructor can be defined with the same name as the name of a class. It is defined in

above example.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 69

File Handling

PHP readfile() Function

The readfile() function reads a file and writes it to the output buffer.

Assume we have a text file called "webdictionary.txt", stored on the server, that looks like this:

AJAX = Asynchronous JavaScript and XML

CSS = Cascading Style Sheets

HTML = Hyper Text Markup Language

PHP = PHP Hypertext Preprocessor

SQL = Structured Query Language

SVG = Scalable Vector Graphics

XML = EXtensible Markup Language

The PHP code to read the file and write it to the output buffer is as follows (the readfile()

function returns the number of bytes read on success):

Example

<?php

echo readfile("webdictionary.txt");

?>

following functions related to files −

 Opening a file

 Reading a file

 Writing a file

 Closing a file

Opening and Closing Files

The PHP fopen() function is used to open a file. It requires two arguments stating first the file

name and then mode in which to operate.

Files modes can be specified as one of the six options in this table.

Mode Purpose

r Opens the file for reading only.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 70

Places the file pointer at the beginning of the file.

r+ Opens the file for reading and writing.

Places the file pointer at the beginning of the file.

w Opens the file for writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If files does not

exist then it attempts to create a file.

w+ Opens the file for reading and writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If files does not

exist then it attempts to create a file.

a Opens the file for writing only.

Places the file pointer at the end of the file.

If files does not exist then it attempts to create a file.

a+ Opens the file for reading and writing only.

Places the file pointer at the end of the file.

If files does not exist then it attempts to create a file.

If an attempt to open a file fails then fopen returns a value of false otherwise it returns a file

pointer which is used for further reading or writing to that file.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 71

After making a changes to the opened file it is important to close it with the fclose() function.

The fclose() function requires a file pointer as its argument and then returns true when the closure

succeeds or false if it fails.

Reading a file

Once a file is opened using fopen() function it can be read with a function called fread(). This

function requires two arguments. These must be the file pointer and the length of the file

expressed in bytes.

The files length can be found using the filesize() function which takes the file name as its

argument and returns the size of the file expressed in bytes.

So here are the steps required to read a file with PHP.

 Open a file using fopen() function.

 Get the file's length using filesize() function.

 Read the file's content using fread() function.

 Close the file with fclose() function.

The following example assigns the content of a text file to a variable then displays those contents

on the web page.

<html>

 <head>

 <title>Reading a file using PHP</title>

 </head>

 <body>

 <?php

 $filename = "tmp.txt";

 $file = fopen($filename, "r");

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 72

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

 $filesize = filesize($filename);

 $filetext = fread($file, $filesize);

 fclose($file);

 echo ("File size : $filesize bytes");

 echo ("<pre>$filetext</pre>");

 ?>

 </body>

</html>

It will produce the following result −

Writing a file

A new file can be written or text can be appended to an existing file using the

PHP fwrite() function. This function requires two arguments specifying a file pointer and the

string of data that is to be written. Optionally a third integer argument can be included to specify

the length of the data to write. If the third argument is included, writing would will stop after the

specified length has been reached.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 73

The following example creates a new text file then writes a short text heading inside it. After

closing this file its existence is confirmed using file_exist() function which takes file name as an

argument

<?php

 $filename = "/home/user/guest/newfile.txt";

 $file = fopen($filename, "w");

 if($file == false) {

 echo ("Error in opening new file");

 exit();

 }

 fwrite($file, "This is a simple test\n");

 fclose($file);

?>

<html>

 <head>

 <title>Writing a file using PHP</title>

 </head>

 <body>

 <?php

 $filename = "newfile.txt";

 $file = fopen($filename, "r");

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 74

 $filesize = filesize($filename);

 $filetext = fread($file, $filesize);

 fclose($file);

 echo ("File size : $filesize bytes");

 echo ("$filetext");

 echo("file name: $filename");

 ?>

 </body>

</html>

It will produce the following result −

Sending Emails using PHP

PHP must be configured correctly in the php.ini file with the details of how your system sends

email. Open php.ini file available in /etc/ directory and find the section headed [mail function].

Windows users should ensure that two directives are supplied. The first is called SMTP that

defines your email server address. The second is called sendmail_from which defines your own

email address.

The configuration for Windows should look something like this −

[mail function]

; For Win32 only.

SMTP = smtp.secureserver.net

; For win32 only

sendmail_from = webmaster@tutorialspoint.com

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 75

Linux users simply need to let PHP know the location of their sendmail application. The path

and any desired switches should be specified to the sendmail_path directive.

The configuration for Linux should look something like this −

[mail function]

; For Win32 only.

SMTP =

; For win32 only

sendmail_from =

; For Unix only

sendmail_path = /usr/sbin/sendmail -t -i

Now you are ready to go −

Sending plain text email

PHP makes use of mail() function to send an email. This function requires three mandatory

arguments that specify the recipient's email address, the subject of the the message and the actual

message additionally there are other two optional parameters.

mail(to, subject, message, headers, parameters);

Here is the description for each parameters.

Sr.No Parameter & Description

1 to

Required. Specifies the receiver / receivers of the email

2 subject

Required. Specifies the subject of the email. This parameter cannot contain any

newline characters

3 message

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 76

Required. Defines the message to be sent. Each line should be separated with a

LF (\n). Lines should not exceed 70 characters

4 headers

Optional. Specifies additional headers, like From, Cc, and Bcc. The additional

headers should be separated with a CRLF (\r\n)

5 parameters

Optional. Specifies an additional parameter to the send mail program

As soon as the mail function is called PHP will attempt to send the email then it will return true

if successful or false if it is failed.

Multiple recipients can be specified as the first argument to the mail() function in a comma

separated list.

Sending HTML email

When you send a text message using PHP then all the content will be treated as simple text. Even

if you will include HTML tags in a text message, it will be displayed as simple text and HTML

tags will not be formatted according to HTML syntax. But PHP provides option to send an HTML

message as actual HTML message.

While sending an email message you can specify a Mime version, content type and character set

to send an HTML email.

Example

Following example will send an HTML email message to xyz@somedomain.com copying it to

afgh@somedomain.com. You can code this program in such a way that it should receive all

content from the user and then it should send an email.

<html>

 <head>

 <title>Sending HTML email using PHP</title>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 77

 </head>

 <body>

 <?php

 $to = "xyz@somedomain.com";

 $subject = "This is subject";

 $message = "This is HTML message.";

 $message .= "<h1>This is headline.</h1>";

 $header = "From:abc@somedomain.com \r\n";

 $header .= "Cc:afgh@somedomain.com \r\n";

 $header .= "MIME-Version: 1.0\r\n";

 $header .= "Content-type: text/html\r\n";

 $retval = mail ($to,$subject,$message,$header);

 if($retval == true) {

 echo "Message sent successfully...";

 }else {

 echo "Message could not be sent...";

 }

 ?>

 </body>

</html>

Sending attachments with email

To send an email with mixed content requires to set Content-type header to multipart/mixed.

Then text and attachment sections can be specified within boundaries.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 78

A boundary is started with two hyphens followed by a unique number which can not appear in

the message part of the email. A PHP function md5() is used to create a 32 digit hexadecimal

number to create unique number. A final boundary denoting the email's final section must also

end with two hyphens.

<?php

 // request variables // important

 $from = $_REQUEST["from"];

 $emaila = $_REQUEST["emaila"];

 $filea = $_REQUEST["filea"];

 if ($filea) {

 function mail_attachment ($from , $to, $subject, $message, $attachment){

 $fileatt = $attachment; // Path to the file

 $fileatt_type = "application/octet-stream"; // File Type

 $start = strrpos($attachment, '/') == -1 ?

 strrpos($attachment, '//') : strrpos($attachment, '/')+1;

 $fileatt_name = substr($attachment, $start,

 strlen($attachment)); // Filename that will be used for the

 file as the attachment

 $email_from = $from; // Who the email is from

 $subject = "New Attachment Message";

 $email_subject = $subject; // The Subject of the email

 $email_txt = $message; // Message that the email has in it

 $email_to = $to; // Who the email is to

 $headers = "From: ".$email_from;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 79

 $file = fopen($fileatt,'rb');

 $data = fread($file,filesize($fileatt));

 fclose($file);

 $msg_txt="\n\n You have recieved a new attachment message from $from";

 $semi_rand = md5(time());

 $mime_boundary = "==Multipart_Boundary_x{$semi_rand}x";

 $headers .= "\nMIME-Version: 1.0\n" . "Content-Type: multipart/mixed;\n" . "

 boundary=\"{$mime_boundary}\"";

 $email_txt .= $msg_txt;

 $email_message .= "This is a multi-part message in MIME format.\n\n" .

 "--{$mime_boundary}\n" . "Content-Type:text/html;

 charset = \"iso-8859-1\"\n" . "Content-Transfer-Encoding: 7bit\n\n" .

 $email_txt . "\n\n";

 $data = chunk_split(base64_encode($data));

 $email_message .= "--{$mime_boundary}\n" . "Content-Type: {$fileatt_type};\n" .

 " name = \"{$fileatt_name}\"\n" . //"Content-Disposition: attachment;\n" .

 //" filename = \"{$fileatt_name}\"\n" . "Content-Transfer-Encoding:

 base64\n\n" . $data . "\n\n" . "--{$mime_boundary}--\n";

 $ok = mail($email_to, $email_subject, $email_message, $headers);

 if($ok) {

 echo "File Sent Successfully.";

 unlink($attachment); // delete a file after attachment sent.

 }else {

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 80

 die("Sorry but the email could not be sent. Please go back and try again!");

 }

 }

 move_uploaded_file($_FILES["filea"]["tmp_name"],

 'temp/'.basename($_FILES['filea']['name']));

 mail_attachment("$from", "youremailaddress@gmail.com",

 "subject", "message", ("temp/".$_FILES["filea"]["name"]));

 }

?>

<html>

 <head>

 <script language = "javascript" type = "text/javascript">

 function CheckData45() {

 with(document.filepost) {

 if(filea.value ! = "") {

 document.getElementById('one').innerText =

 "Attaching File ... Please Wait";

 }

 }

 }

 </script>

 </head>

 <body>

 <table width = "100%" height = "100%" border = "0"

 cellpadding = "0" cellspacing = "0">

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 81

 <tr>

 <td align = "center">

 <form name = "filepost" method = "post"

 action = "file.php" enctype = "multipart/form-data" id = "file">

 <table width = "300" border = "0" cellspacing = "0"

 cellpadding = "0">

 <tr valign = "bottom">

 <td height = "20">Your Name:</td>

 </tr>

 <tr>

 <td><input name = "from" type = "text"

 id = "from" size = "30"></td>

 </tr>

 <tr valign = "bottom">

 <td height = "20">Your Email Address:</td>

 </tr>

 <tr>

 <td class = "frmtxt2"><input name = "emaila"

 type = "text" id = "emaila" size = "30"></td>

 </tr>

 <tr>

 <td height = "20" valign = "bottom">Attach File:</td>

 </tr>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 82

 <tr valign = "bottom">

 <td valign = "bottom"><input name = "filea"

 type = "file" id = "filea" size = "16"></td>

 </tr>

 <tr>

 <td height = "40" valign = "middle"><input

 name = "Reset2" type = "reset" id = "Reset2" value = "Reset">

 <input name = "Submit2" type = "submit"

 value = "Submit" onClick = "return CheckData45()"></td>

 </tr>

 </table>

 </form>

 <center>

 <table width = "400">

 <tr>

 <td id = "one">

 </td>

 </tr>

 </table>

 </center>

 </td>

 </tr>

 </table>

 </body>

</html>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 83

Error handling is the process of catching errors raised by your program and then taking

appropriate action. If you would handle errors properly then it may lead to many unforeseen

consequences.

Its very simple in PHP to handle an errors.

Using die() function

While writing your PHP program you should check all possible error condition before going

ahead and take appropriate action when required.

Try following example without having /tmp/test.xt file and with this file.

<?php

 if(!file_exists("/tmp/test.txt")) {

 die("File not found");

 }else {

 $file = fopen("/tmp/test.txt","r");

 print "Opend file sucessfully";

 }

 // Test of the code here.

?>

This way you can write an efficient code. Using above technique you can stop your program

whenever it errors out and display more meaningful and user friendly message.

Defining Custom Error Handling Function

You can write your own function to handling any error. PHP provides you a framework to define

error handling function.

This function must be able to handle a minimum of two parameters (error level and error message)

but can accept up to five parameters (optionally: file, line-number, and the error context) −

Syntax

error_function(error_level,error_message, error_file,error_line,error_context);

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 84

Sr.No Parameter & Description

1 error_level

Required - Specifies the error report level for the user-defined error. Must be a

value number.

2 error_message

Required - Specifies the error message for the user-defined error

3 error_file :

Optional - Specifies the file name in which the error occurred

4 error_line :Optional - Specifies the line number in which the error occurred

5 error_context :Optional - Specifies an array containing every variable and their

values in use when the error occurred

Possible Error levels

These error report levels are the different types of error the user-defined error handler can be used

for. These values cab used in combination using | operator

Sr.No Constant & Description Value

1 .E_ERROR

Fatal run-time errors. Execution of the script is halted

1

2 E_WARNING

Non-fatal run-time errors. Execution of the script is not halted

2

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 85

3 E_PARSE

Compile-time parse errors. Parse errors should only be generated by

the parser.

4

4 E_NOTICE

Run-time notices. The script found something that might be an error,

but could also happen when running a script normally

8

5 E_CORE_ERROR

Fatal errors that occur during PHP's initial start-up.

16

6 E_CORE_WARNING

Non-fatal run-time errors. This occurs during PHP's initial start-up.

32

7 E_USER_ERROR

Fatal user-generated error. This is like an E_ERROR set by the

programmer using the PHP function trigger_error()

256

8 E_USER_WARNING

Non-fatal user-generated warning. This is like an E_WARNING set

by the programmer using the PHP function trigger_error()

512

9 E_USER_NOTICE

User-generated notice. This is like an E_NOTICE set by the

programmer using the PHP function trigger_error()

1024

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 86

10 E_STRICT

Run-time notices. Enable to have PHP suggest changes to your code

which will ensure the best interoperability and forward compatibility

of your code.

2048

11 E_RECOVERABLE_ERROR

Catchable fatal error. This is like an E_ERROR but can be caught by

a user defined handle (see also set_error_handler())

4096

12 E_ALL

All errors and warnings, except level E_STRICT (E_STRICT will be

part of E_ALL as of PHP 6.0)

8191

All the above error level can be set using following PHP built-in library function where level cab

be any of the value defined in above table.

int error_reporting ([int $level])

Following is the way you can create one error handling function −

<?php

 function handleError($errno, $errstr,$error_file,$error_line) {

 echo "Error: [$errno] $errstr - $error_file:$error_line";

 echo "
";

 echo "Terminating PHP Script";

 die();

 }

?>

Once you define your custom error handler you need to set it using PHP built-in

library set_error_handler function. Now lets examine our example by calling a function which

does not exist.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 87

<?php

 error_reporting(E_ERROR);

 function handleError($errno, $errstr,$error_file,$error_line) {

 echo "Error: [$errno] $errstr - $error_file:$error_line";

 echo "
";

 echo "Terminating PHP Script";

 die();

 }

 //set error handler

 set_error_handler("handleError");

 //trigger error

 myFunction();

?>

Exceptions Handling

PHP 5 has an exception model similar to that of other programming languages. Exceptions are

important and provides a better control over error handling.

Lets explain there new keyword related to exceptions.

 Try − A function using an exception should be in a "try" block. If the exception does not

trigger, the code will continue as normal. However if the exception triggers, an exception

is "thrown".

 Throw − This is how you trigger an exception. Each "throw" must have at least one

"catch".

 Catch − A "catch" block retrieves an exception and creates an object containing the

exception information.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 88

When an exception is thrown, code following the statement will not be executed, and PHP will

attempt to find the first matching catch block. If an exception is not caught, a PHP Fatal Error

will be issued with an "Uncaught Exception ...

 An exception can be thrown, and caught ("catched") within PHP. Code may be surrounded

in a try block.

 Each try must have at least one corresponding catch block. Multiple catch blocks can be

used to catch different classes of exceptions.

 Exceptions can be thrown (or re-thrown) within a catch block.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 try {

 $error = 'Always throw this error';

 throw new Exception($error);

 // Code following an exception is not executed.

 echo 'Never executed';

 }catch (Exception $e) {

 echo 'Caught exception: ', $e->getMessage(), "\n";

 }

 // Continue execution

 echo 'Hello World';

?>

In the above example $e->getMessage function is used to get error message. There are following

functions which can be used from Exception class.

 getMessage() − message of exception

 getCode() − code of exception

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 89

 getFile() − source filename

 getLine() − source line

 getTrace() − n array of the backtrace()

 getTraceAsString() − formated string of trace

Creating Custom Exception Handler

You can define your own custom exception handler. Use following function to set a user-defined

exception handler function.

string set_exception_handler (callback $exception_handler)

Here exception_handler is the name of the function to be called when an uncaught exception

occurs. This function must be defined before calling set_exception_handler().

Example

<?php

 function exception_handler($exception) {

 echo "Uncaught exception: " , $exception->getMessage(), "\n";

 }

 set_exception_handler('exception_handler');

 throw new Exception('Uncaught Exception');

 echo "Not Executed\n";

?>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 90

Create MySQL Database Using PHP

Creating a Database

To create and delete a database you should have admin privilege. Its very easy to create a new

MySQL database. PHP uses mysql_query function to create a MySQL database. This function

takes two parameters and returns TRUE on success or FALSE on failure.

Syntax

bool mysql_query(sql, connection);

Sr.No Parameter & Description

1 sql

Required - SQL query to create a database

2 connection

Optional - if not specified then last opend connection by mysql_connect will be

used.

Example

Try out following example to create a database −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 91

 $sql = 'CREATE Database test_db';

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not create database: ' . mysql_error());

 }

 echo "Database test_db created successfully\n";

 mysql_close($conn);

?>

Selecting a Database

Once you establish a connection with a database server then it is required to select a particular

database where your all the tables are associated.

This is required because there may be multiple databases residing on a single server and you can

do work with a single database at a time.

PHP provides function mysql_select_db to select a database.It returns TRUE on success or

FALSE on failure.

Syntax

bool mysql_select_db(db_name, connection);

Sr.No Parameter & Description

1 db_name : Required - Database name to be selected

2 Connection :Optional - if not specified then last opend connection by

mysql_connect will be used.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 92

Example

Here is the example showing you how to select a database.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'guest';

 $dbpass = 'guest123';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 mysql_select_db('test_db');

 mysql_close($conn);

?>

Creating Database Tables

To create tables in the new database you need to do the same thing as creating the database. First

create the SQL query to create the tables then execute the query using mysql_query() function.

Example

Try out following example to create a table −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 93

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 $sql = 'CREATE TABLE employee('.

 'emp_id INT NOT NULL AUTO_INCREMENT, '.

 'emp_name VARCHAR(20) NOT NULL, '.

 'emp_address VARCHAR(20) NOT NULL, '.

 'emp_salary INT NOT NULL, '.

 'join_date timestamp(14) NOT NULL, '.

 'primary key (emp_id))';

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not create table: ' . mysql_error());

 }

 echo "Table employee created successfully\n";

 mysql_close($conn);

?>

In case you need to create many tables then its better to create a text file first and put all the SQL

commands in that text file and then load that file into $sql variable and excute those commands.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 94

Consider the following content in sql_query.txt file

CREATE TABLE employee(

 emp_id INT NOT NULL AUTO_INCREMENT,

 emp_name VARCHAR(20) NOT NULL,

 emp_address VARCHAR(20) NOT NULL,

 emp_salary INT NOT NULL,

 join_date timestamp(14) NOT NULL,

 primary key (emp_id));

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $query_file = 'sql_query.txt';

 $fp = fopen($query_file, 'r');

 $sql = fread($fp, filesize($query_file));

 fclose($fp);

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not create table: ' . mysql_error());

 }

 echo "Table employee created successfully\n";

 mysql_close($conn);

?>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 95

PHP AND LDAP

LDAP is the Lightweight Directory Access Protocol, and is a protocol used to access "Directory

Servers". The Directory is a special kind of database that holds information in a tree structure.

The concept is similar to your hard disk directory structure, except that in this context, the root

directory is "The world" and the first level subdirectories are "countries". Lower levels of the

directory structure contain entries for companies, organisations or places, while yet lower still we

find directory entries for people, and perhaps equipment or documents.

To refer to a file in a subdirectory on your hard disk, you might use something like:

 /usr/local/myapp/docs

The forwards slash marks each division in the reference, and the sequence is read from left to right.

The equivalent to the fully qualified file reference in LDAP is the "distinguished name", referred

to simply as "dn". An example dn might be:

 cn=John Smith,ou=Accounts,o=My Company,c=US

The comma marks each division in the reference, and the sequence is read from right to left. You

would read this dn as:

 country = US

 organization = My Company

 organizationalUnit = Accounts

 commonName = John Smith

In the same way as there are no hard rules about how you organise the directory structure of a hard

disk, a directory server manager can set up any structure that is meaningful for the purpose.

However, there are some conventions that are used. The message is that you can not write code to

access a directory server unless you know something about its structure, any more than you can

use a database without some knowledge of what is available.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 96

PHP Security Function

What is a Security?

Security is a measure put in place that protects an application from accidental or deliberate

attacks.

The attacks can;

 Corrupt data

 Allow unauthorized users gain access to sensitive data

 Lead to loss of important data

 Posting of unauthorized transactions i.e. in an accounting system

Websites and web applications are hosted on public servers that are accessible from the internet.

Potential security threats

They are basically two groups of people that can attack your system

 Hackers – with the intent to gain access to unauthorized data or disrupt the application

 Users – they may innocently enter wrong parameters in forms which can have negative

effects on a website or web application.

The following are the kinds of attacks that we need to look out for.

 SQL Injection – This type of attack appends harmful code to SQL statements.

This is done using either user input forms or URLs that use variables.

The appended code comments the condition in the WHERE clause of an SQL statement. The

appended code can also;

o insert a condition that will always be true

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 97

o delete data from a table

o update data in a table

o This type of attack is usually used to gain unauthorized access to an application.

o Cross-site scripting – this type of attack inserts harmful code usually JavaScript. This is

done using user input forms such as contact us and comments forms. This is done to;

 Retrieve sensitive information such as cookies data

 Redirect the user to a different URL.

 Other threats can include – PHP code injection, Shell Injection, Email Injection,

Script Source Code Disclosure etc.

PHP Application Security Best Practices

Let’s now look at some of the PHP Security best practices that we must consider when

developing our applications.

PHP strip_tags

The strip_tags functions removes HTML, JavaScript or PHP tags from a string.

This function is useful when we have to protect our application against attacks such as cross site

scripting.

Let’s consider an application that accepts comments from users.

<?php

$user_input = "Your site rocks";

echo "<h4>My Commenting System</h4>";

echo $user_input;

?>

 Assuming you have saved comments.php in the phptuts folder, browse to the

URLhttp://localhost/phptuts/comments.php

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 98

Let’s assume you receive the following as the user input <script>alert('Your site

sucks!');</script>

<?php

$user_input = "<script>alert('Your site sucks!');</script>";

echo "<h4>My Commenting System</h4>";

echo $user_input;

?>

 Browse to the URL http://localhost/phptuts/comments.php

Let’s now secure our application from such attacks using strip_tags function.

<?php

$user_input = "<script>alert('Your site sucks!');</script>";

echo strip_tags($user_input);

?>

 Browse to the URL http://localhost/phptuts/comments.php

http://cdn.guru99.com/images/2013/04/normal_comment.png
http://cdn.guru99.com/images/2013/04/attacked_comment.png

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 99

PHP filter_var function

The filter_var function is used to validate and sanitize data.

Validation checks if the data is of the right type. A numeric validation check on a string returns a

false result.

Sanitization is removing illegal characters from a string.

The code is for the commenting system.

It uses the filter_var function and FILTER_SANITIZE_STRIPPED constant to strip tags.

<?php

$user_input = "<script>alert('Your site sucks!');</script>";

echo filter_var($user_input, FILTER_SANITIZE_STRIPPED); ?>

 Mysql_real_escape_string function This function is used to protect an application against SQL

injection.

Let’s suppose that we have the following SQL statement for validating the user id and password.

<?php

SELECT uid,pwd,role FROM users WHERE uid = 'admin' AND password = 'pass'; ?>

 A malicious user can enter the following code in the user id text box. ' OR 1 = 1 -- And 1234 in

the password text box Let’s code the authentication module

<?php

$uid = "' OR 1 = 1 -- ";

$pwd = "1234";

$sql = "SELECT uid,pwd,role FROM users WHERE uid = '$uid' AND password = '$pwd';";

http://cdn.guru99.com/images/2013/04/sanitized_comment.png

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 100

echo $sql;

?>

 The end result will be

<?php

SELECT uid,pwd,role FROM users WHERE uid = '' OR 1 = 1 -- ' AND password = '1234';

?>

HERE,

 “SELECT * FROM users WHERE user_id = ''” tests for an empty user id

 “' OR 1 = 1 “ is a condition that will always be true

 “--" comments that part that tests for the password.

The above query will return all the users Let’s now use mysql_real_escape_string function to

secure our login module.

<?php

$uid = mysql_real_escape_string("' OR 1 = 1 -- ");

$pwd = mysql_real_escape_string("1234");

$sql = "SELECT uid,pwd,role FROM users WHERE uid = '$uid' AND password = '$pwd';";

echo $sql;

?>

 The above code will output

<?php

SELECT uid,pwd,role FROM users WHERE uid = '\' OR 1 = 1 -- ' AND password = '1234';

?>

 Note the second single quote has been escaped for us, it will be treated as part of the user id

and the password won’t be commented.

PHP Md5 and PHP sha1

Md5 is the acronym for Message Digest 5 and sha1 is the acronym for Secure Hash Algorithm 1.

They are both used to encrypt strings.

Once a string has been encrypted, it is tedious to decrypt it.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 101

Md5 and sha1 are very useful when storing passwords in the database.

The code below shows the implementation of md5 and sha1

<?php

echo "MD5 Hash: " . md5("password");

echo "SHA1 Hash: " . sha1("password");

?>

 Assuming you have saved the file hashes.php in phptuts folder, browse to the URL

As you can see from the above hashes, if an attacker gained access to your database, they still

wouldn’t know the passwords for them to login.

Summary

 Security refers to measures put in place to protect an application from accidental and

malicious attacks.

 strip_tags function is used to remove tags such as <script></script> from input data

 filter_var function validates and php sanitize input data

 mysql_real_escape_string is used to sanitize SQL statement. It removes malicious

characters from the statements

 both MD5 and SHA1 are used to encrypt password.

http://cdn.guru99.com/images/2013/04/hashes.png

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 102

TEMPLATE

A template engine is used to separate the presentation from the business logic. A good developer

knows this is very important - not only it allows for delegating responsibilities (the designer works

on the presentation layer while the programmer works on the business logic), but it also provides

a more easier maintenance.

There are a lot of template engines for PHP. A very popular example is Smarty. Most of these

template engines have a lot of advanced options and require the user to learn a new syntax for

building the template files.

What if you just want some easy to understand and simple to use template engine? Why not build

your own? In this tutorial we'll do just that - we'll create a very simple template engine in PHP that

anyone can use without having to spend time reading manuals.

Our template files will be written in pure HTML with some extra tags for easy replacement. We'll

put the tags where we want our content to be - the engine will basically act as a replacement feature,

but it could be updated for more advanced operations.

In the next picture I provide an overview of the working of this simple PHP template engine.

http://www.smarty.net/

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 103

A simple HTML template

First, let's start with our HTML template file. We must define the tags' format we're going to use.

Most templates use curly brackets surrounding the tags, e.g. {tag}, but I like to use a different

syntax: [@tag]. Feel free to define your own conventions.

Imagine a typical case of building a user's profile page. Let's assume we need to display the user's

photo, username, real name, age and location. An example HTML is provided below.

<h1>[@username] profile</h1>

Name: [@name]

Age: [@age]

Location: [@location]

Create your template file and save it. I like to use the tpl extension. In this case, let's call this

template file user_profile.tpl.

Now we just need to load it in our PHP script and replace those tags with real values.

Template engine class

For easier use and portability we'll need a class - it will be called Template. This class will only

need two member variables - one for storing the filename of the template and the other to store the

values that will be used for replacing the tags in the template.

Let's start with this. We'll define our class and its constructor. I provide the code for this bellow.

class Template {

 protected $file;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 104

 protected $values = array();

 public function __construct($file) {

 $this->file = $file;

 }}

Putting the engine to use

Now we can finally test our first iteration of the template engine. We'll create a simple PHP file

(named user_profile.php) which loads the template with test data and outputs its result.

We'll start by including the file with the definition for our Template class (I called mine

template.class.php). We then make a new Template object and we define each value in the

template. In the end we want to write its output.

include("template.class.php");

 $profile = new Template("user_profile.tpl");

$profile->set("username", "monk3y");

$profile->set("photoURL", "photo.jpg");

$profile->set("name", "Monkey man");

$profile->set("age", "23");

$profile->set("location", "Portugal");

 echo $profile->output();

 <tr>

 <td>[@username]</td>

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 105

 <td>[@location]</td>

 </tr>

Now we'll combine these two into one. Because each user/row will be represented by a different

template we'll make a function that will allow us to merge these different templates. This is needed

because this merged value will then be used to replace the users tag on the main template

(list_users.tpl).

static public function merge($templates, $separator = "n") {

 $output = "";

 foreach ($templates as $template) {

 $content = (get_class($template) !== "Template")

 ? "Error, incorrect type - expected Template."

 : $template->output();

 $output .= $content . $separator;

 }

 return $output;

}

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 106

Python
Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is

designed to be highly readable. It uses English keywords frequently where as other languages use

punctuation, and it has fewer syntactical constructions than other languages.

 Python is Interpreted: Python is processed at runtime by the interpreter. You do not need

to compile your program before executing it. This is similar to PERL and PHP.

 Python is Interactive: You can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

 Python is Object-Oriented: Python supports Object-Oriented style or technique of

programming that encapsulates code within objects.

 Python is a Beginner's Language: Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from simple

text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the National

Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,

SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General

Public License (GPL).

Python Features

Python's features include:

 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax.

This allows the student to pick up the language quickly.

 Easy-to-read: Python code is more clearly defined and visible to the eyes.

 Easy-to-maintain: Python's source code is fairly easy-to-maintain.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 107

 A broad standard library: Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

 Interactive Mode :Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.

 Portable: Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

 Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.

 Databases: Python provides interfaces to all major commercial databases.

 GUI Programming: Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh,

and the X Window system of Unix.

 Scalable: Python provides a better structure and support for large programs than shell

scripting.

Installing Python

Python distribution is available for a wide variety of platforms. You need to download only the

binary code applicable for your platform and install Python.

If the binary code for your platform is not available, you need a C compiler to compile the source

code manually. Compiling the source code offers more flexibility in terms of choice of features

that you require in your installation.

Here is a quick overview of installing Python on various platforms −

Unix and Linux Installation

Here are the simple steps to install Python on Unix/Linux machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link to download zipped source code available for Unix/Linux.

 Download and extract files.

https://www.python.org/downloads/

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 108

 Editing the Modules/Setup file if you want to customize some options.

 run ./configure script

 make

 make install

This installs Python at standard location /usr/local/bin and its libraries

at/usr/local/lib/pythonXX where XX is the version of Python.

Windows Installation

Here are the steps to install Python on Windows machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link for the Windows installer python-XYZ.msi file where XYZ is the version

you need to install.

 To use this installer python-XYZ.msi, the Windows system must support Microsoft

Installer 2.0. Save the installer file to your local machine and then run it to find out if your

machine supports MSI.

 Run the downloaded file. This brings up the Python install wizard, which is really easy to

use. Just accept the default settings, wait until the install is finished, and you are done.

Setting up PATH

Programs and other executable files can be in many directories, so operating systems provide a

search path that lists the directories that the OS searches for executables.

The path is stored in an environment variable, which is a named string maintained by the operating

system. This variable contains information available to the command shell and other programs.

The path variable is named as PATH in Unix or Path in Windows (Unix is casesensitive;

Windows is not).

In Mac OS, the installer handles the path details. To invoke the Python interpreter from any

particular directory, you must add the Python directory to your path.

https://www.python.org/downloads/

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 109

Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have a

GUI application on your system that supports Python.

 Unix − IDLE is the very first Unix IDE for Python.

 Windows − PythonWin is the first Windows interface for Python and is an IDE with a

GUI.

 Macintosh − The Macintosh version of Python along with the IDLE IDE is available from

the main website, downloadable as either MacBinary or BinHex'd files.

If you are not able to set up the environment properly, then you can take help from your system

admin. Make sure the Python environment is properly set up and working perfectly fine.

The Python language has many similarities to Perl, C, and Java. However, there are some definite

differences between the languages.

First Python Program

Let us execute programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the following

prompt −

$ python

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Type the following text at the Python prompt and press the Enter:

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print statement with

parenthesis as in print ("Hello, Python!");. However in Python version 2.4.3, this produces the

following result:

Hello, Python!

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 110

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and continues until

the script is finished. When the script is finished, the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have extension .py. Type the

following source code in a test.py file:

print "Hello, Python!"

We assume that you have Python interpreter set in PATH variable. Now, try to run this program

as follows −

$ python test.py

This produces the following result:

Hello, Python!

Let us try another way to execute a Python script. Here is the modified test.py file −

#!/usr/bin/python

print "Hello, Python!"

We assume that you have Python interpreter available in /usr/bin directory. Now, try to run this

program as follows −

$ chmod +x test.py # This is to make file executable

$./test.py

This produces the following result −

Hello, Python!

Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more

letters, underscores and digits (0 to 9).

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 111

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a

case sensitive programming language. Thus, Manpower and manpower are two different

identifiers in Python.

Here are naming conventions for Python identifiers −

 Class names start with an uppercase letter. All other identifiers start with a lowercase letter.

 Starting an identifier with a single leading underscore indicates that the identifier is private.

 Starting an identifier with two leading underscores indicates a strongly private identifier.

 If the identifier also ends with two trailing underscores, the identifier is a language-defined

special name.

Reserved Words

The following list shows the Python keywords. These are reserved words and you cannot use

them as constant or variable or any other identifier names. All the Python keywords contain

lowercase letters only.

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

del import try

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 112

elif in while

else is with

except lambda yield

Lines and Indentation

Python provides no braces to indicate blocks of code for class and function definitions or flow

control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be

indented the same amount. For example −

if True:

 print "True"

else:

 print "False"

However, the following block generates an error −

if True:

 print "Answer"

 print "True"

else:

 print "Answer"

 print "False"

Thus, in Python all the continuous lines indented with same number of spaces would form a block.

The following example has various statement blocks −

Note: Do not try to understand the logic at this point of time. Just make sure you understood

various blocks even if they are without braces.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 113

#!/usr/bin/python

import sys

try:

 # open file stream

 file = open(file_name, "w")

except IOError:

 print "There was an error writing to", file_name

 sys.exit()

print "Enter '", file_finish,

print "' When finished"

while file_text != file_finish:

 file_text = raw_input("Enter text: ")

 if file_text == file_finish:

 # close the file

 file.close

 break

 file.write(file_text)

 file.write("\n")

file.close()

file_name = raw_input("Enter filename: ")

if len(file_name) == 0:

 print "Next time please enter something"

 sys.exit()

try:

 file = open(file_name, "r")

except IOError:

 print "There was an error reading file"

 sys.exit()

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 114

file_text = file.read()

file.close()

print file_text

Multi-Line Statements

Statements in Python typically end with a new line. Python does, however, allow the use of the

line continuation character (\) to denote that the line should continue. For example −

total = item_one + \

 item_two + \

 item_three

Statements contained within the [], {}, or () brackets do not need to use the line continuation

character. For example −

days = ['Monday', 'Tuesday', 'Wednesday',

 'Thursday', 'Friday']

Quotation in Python

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as long

as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the following

are legal −

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python

A hash sign (#) that is not inside a string literal begins a comment. All characters after the # and

up to the end of the physical line are part of the comment and the Python interpreter ignores them.

#!/usr/bin/python

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 115

First comment

print "Hello, Python!" # second comment

This produces the following result −

Hello, Python!

You can type a comment on the same line after a statement or expression −

name = "Madisetti" # This is again comment

You can comment multiple lines as follows −

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Using Blank Lines

A line containing only whitespace, possibly with a comment, is known as a blank line and Python

totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a multiline

statement.

Waiting for the User

The following line of the program displays the prompt, the statement saying “Press the enter key

to exit”, and waits for the user to take action −

#!/usr/bin/python

raw_input("\n\nPress the enter key to exit.")

Here, "\n\n" is used to create two new lines before displaying the actual line. Once the user presses

the key, the program ends. This is a nice trick to keep a console window open until the user is

done with an application.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 116

Multiple Statements on a Single Line

The semicolon (;) allows multiple statements on the single line given that neither statement starts

a new code block. Here is a sample snip using the semicolon −

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites

A group of individual statements, which make a single code block are called suites in Python.

Compound or complex statements, such as if, while, def, and class require a header line and a

suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and are

followed by one or more lines which make up the suite. For example −

if expression :

 suite

elif expression :

 suite

else :

 suite

Command Line Arguments

Many programs can be run to provide you with some basic information about how they should

be run. Python enables you to do this with -h −

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 117

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored as a

numeric value and his or her address is stored as alphanumeric characters. Python has various

standard data types that are used to define the operations possible on them and the storage method

for each of them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign a value to

them. For example −

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del statement. The syntax of

the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example −

del var

del var_a, var_b

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 118

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase l with long, but it is recommended that you use only

an uppercase L to avoid confusion with the number 1. Python displays long integers with

an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted by

x + yj, where x and y are the real numbers and j is the imaginary unit.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 119

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the quotation

marks. Python allows for either pairs of single or double quotes. Subsets of strings can be taken

using the slice operator ([] and [:]) with indexes starting at 0 in the beginning of the string and

working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition operator.

For example −

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

This will produce the following result −

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items separated by

commas and enclosed within square brackets ([]). To some extent, lists are similar to arrays in C.

One difference between them is that all the items belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with indexes starting

at 0 in the beginning of the list and working their way to end -1. The plus (+) sign is the list

concatenation operator, and the asterisk (*) is the repetition operator. For example −

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 120

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.200000000000003]

abcd

[786, 2.23]

[2.23, 'john', 70.200000000000003]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john']

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of

values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and their

elements and size can be changed, while tuples are enclosed in parentheses (()) and cannot be

updated. Tuples can be thought of as read-only lists. For example −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 121

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result −

('abcd', 786, 2.23, 'john', 70.200000000000003)

abcd

(786, 2.23)

(2.23, 'john', 70.200000000000003)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple, which is not

allowed. Similar case is possible with lists −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or hashes

found in Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but

are usually numbers or strings. Values, on the other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using

square braces ([]). For example −

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 122

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are

"out of order"; they are simply unordered.

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert between

types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another. These

functions return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer. base specifies the base if x is a string.

long(x [,base]) Converts x to a long integer. base specifies the base if x is a string.

float(x) Converts x to a floating-point number.

complex(real

[,imag])

Creates a complex number.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 123

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary. d must be a sequence of (key,value) tuples.

frozenset(s) Converts s to a frozen set.

chr(x) Converts an integer to a character.

unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 124

Conditional Loops

A loop statement allows us to execute a statement or group of statements multiple times. The

following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle looping requirements.

Loop Type Description

while loop

Repeats a statement or group of statements while a given

condition is TRUE. It tests the condition before executing the

loop body.

for loop

Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

nested loops

You can use one or more loop inside any another while, for or

do..while loop.

while loop

A while loop statement in Python programming language repeatedly executes a target statement

as long as a given condition is true.

Syntax

The syntax of a while loop in Python programming language is −

while expression:

 statement(s)

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm
https://www.tutorialspoint.com/python/python_while_loop.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 125

Here, statement(s) may be a single statement or a block of statements. The condition may be

any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following the

loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

Flow Diagram

Here, key point of the while loop is that the loop might not ever run. When the condition is tested

and the result is false, the loop body will be skipped and the first statement after the while loop

will be executed.

Example

#!/usr/bin/python

count = 0

while (count < 9):

 print 'The count is:', count

 count = count + 1

print "Good bye!"

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 126

When the above code is executed, it produces the following result −

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

The block here, consisting of the print and increment statements, is executed repeatedly until

count is no longer less than 9. With each iteration, the current value of the index count is displayed

and then increased by 1.

FOR LOOP

It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

for iterating_var in sequence:

 statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence

is assigned to the iterating variable iterating_var. Next, the statements block is executed. Each

item in the list is assigned to iterating_var, and the statement(s) block is executed until the entire

sequence is exhausted.Flow Diagram

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 127

Example

#!/usr/bin/python

for letter in 'Python': # First Example

 print 'Current Letter :', letter

fruits = ['banana', 'apple', 'mango']

for fruit in fruits: # Second Example

 print 'Current fruit :', fruit

print "Good bye!"

When the above code is executed, it produces the following result −

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

NESTED LOOPS

Python programming language allows to use one loop inside another loop. Following section

shows few examples to illustrate the concept.

Syntax

for iterating_var in sequence:

 for iterating_var in sequence:

 statements(s)

 statements(s)

The syntax for a nested while loop statement in Python programming language is as follows −

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 128

while expression:

 while expression:

 statement(s)

 statement(s)

A final note on loop nesting is that you can put any type of loop inside of any other type of loop.

For example a for loop can be inside a while loop or vice versa.

Files I/O

Printing to the Screen

The simplest way to produce output is using the print statement where you can pass zero or more

expressions separated by commas. This function converts the expressions you pass into a string

and writes the result to standard output as follows −

#!/usr/bin/python

print "Python is really a great language,", "isn't it?"

This produces the following result on your standard screen −

Python is really a great language, isn't it?

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by default

comes from the keyboard. These functions are −

 raw_input

 input

The raw_input Function

The raw_input([prompt]) function reads one line from standard input and returns it as a string

(removing the trailing newline).

#!/usr/bin/python

str = raw_input("Enter your input: ");

print "Received input is : ", str

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 129

This prompts you to enter any string and it would display same string on the screen. When I typed

"Hello Python!", its output is like this −

Enter your input: Hello Python

Received input is : Hello Python

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes the input is a valid

Python expression and returns the evaluated result to you.

#!/usr/bin/python

str = input("Enter your input: ");

print "Received input is : ", str

This would produce the following result against the entered input −

Enter your input: [x*5 for x in range(2,10,2)]

Recieved input is : [10, 20, 30, 40]

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output. Now, we will see

how to use actual data files.

Python provides basic functions and methods necessary to manipulate files by default. You can

do most of the file manipulation using a file object.

The open Function

Before you can read or write a file, you have to open it using Python's built-in open() function.

This function creates a file object, which would be utilized to call other support methods

associated with it.

Syntax

file object = open(file_name [, access_mode][, buffering])

Here are parameter details:

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 130

 file_name: The file_name argument is a string value that contains the name of the file that

you want to access.

 access_mode: The access_mode determines the mode in which the file has to be opened,

i.e., read, write, append, etc. A complete list of possible values is given below in the table.

This is optional parameter and the default file access mode is read (r).

 buffering: If the buffering value is set to 0, no buffering takes place. If the buffering value

is 1, line buffering is performed while accessing a file. If you specify the buffering value

as an integer greater than 1, then buffering action is performed with the indicated buffer

size. If negative, the buffer size is the system default(default behavior).

Here is a list of the different modes of opening a file −

Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning of the

file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the

beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer

placed at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does

not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file

exists. If the file does not exist, creates a new file for writing.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 131

w+ Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the

existing file if the file exists. If the file does not exist, creates a new file for

reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file

exists. That is, the file is in the append mode. If the file does not exist, it creates

a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the

file if the file exists. That is, the file is in the append mode. If the file does not

exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist,

it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is

at the end of the file if the file exists. The file opens in the append mode. If the

file does not exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related to that

file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 132

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

Example

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

print "Closed or not : ", fo.closed

print "Opening mode : ", fo.mode

print "Softspace flag : ", fo.softspace

This produces the following result −

Name of the file: foo.txt

Closed or not : False

Opening mode : wb

Softspace flag : 0

The close() Method

The close() method of a file object flushes any unwritten information and closes the file object,

after which no more writing can be done.

Python automatically closes a file when the reference object of a file is reassigned to another file.

It is a good practice to use the close() method to close a file.

Syntax

fileObject.close();

Example

#!/usr/bin/python

Open a file

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 133

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

Close opend file

fo.close()

This produces the following result −

Name of the file: foo.txt

Reading and Writing Files

The file object provides a set of access methods to make our lives easier. We would see how to

use read() and write() methods to read and write files.

The write() Method

The write() method writes any string to an open file. It is important to note that Python strings

can have binary data and not just text.

The write() method does not add a newline character ('\n') to the end of the string −

Syntax

fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.

Example

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

fo.write("Python is a great language.\nYeah its great!!\n");

Close opend file

fo.close()

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 134

The above method would create foo.txt file and would write given content in that file and finally

it would close that file. If you would open this file, it would have following content.

Python is a great language.

Yeah its great!!

The read() Method

The read() method reads a string from an open file. It is important to note that Python strings can

have binary data. apart from text data.

Syntax

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This method starts

reading from the beginning of the file and if count is missing, then it tries to read as much as

possible, maybe until the end of file.

Example

Let's take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

Close opend file

fo.close()

This produces the following result −

Read String is : Python is

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 135

File Positions

The tell() method tells you the current position within the file; in other words, the next read or

write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument indicates

the number of bytes to be moved. The from argument specifies the reference position from where

the bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1 means use

the current position as the reference position and if it is set to 2 then the end of the file would be

taken as the reference position.

Example

Let us take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

Check current position

position = fo.tell();

print "Current file position : ", position

Reposition pointer at the beginning once again

position = fo.seek(0, 0);

str = fo.read(10);

print "Again read String is : ", str

Close opend file

fo.close()

This produces the following result −

Read String is : Python is

Current file position : 10

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 136

Again read String is : Python is

Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations, such as

renaming and deleting files.

To use this module you need to import it first and then you can call any related functions.

The rename() Method

The rename() method takes two arguments, the current filename and the new filename.

Syntax

os.rename(current_file_name, new_file_name)

Example

Following is the example to rename an existing file test1.txt:

#!/usr/bin/python

import os

Rename a file from test1.txt to test2.txt

os.rename("test1.txt", "test2.txt")

The remove() Method

You can use the remove() method to delete files by supplying the name of the file to be deleted

as the argument.

Syntax

os.remove(file_name)

Example

Following is the example to delete an existing file test2.txt −

#!/usr/bin/python

import os

Delete file test2.txt

os.remove("text2.txt")

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 137

Directories in Python

All files are contained within various directories, and Python has no problem handling these too.

The os module has several methods that help you create, remove, and change directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the current directory.

You need to supply an argument to this method which contains the name of the directory to be

created.

Syntax

os.mkdir("newdir")

Example

Following is the example to create a directory test in the current directory −

#!/usr/bin/python

import os

Create a directory "test"

os.mkdir("test")

The chdir() Method

You can use the chdir() method to change the current directory. The chdir() method takes an

argument, which is the name of the directory that you want to make the current directory.

Syntax

os.chdir("newdir")

Example

Following is the example to go into "/home/newdir" directory −

#!/usr/bin/python

import os

Changing a directory to "/home/newdir"

os.chdir("/home/newdir")

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 138

Errors - Exceptions Handling

Python provides two very important features to handle any unexpected error in your Python

programs and to add debugging capabilities in them −

 Exception Handling: This would be covered in this tutorial. Here is a list standard

Exceptions available in Python: Standard Exceptions.

 Assertions: This would be covered in Assertions in Python tutorial.

List of Standard Exceptions −

EXCEPTION

NAME

DESCRIPTION

Exception Base class for all exceptions

StopIteration Raised when the next() method of an iterator does not point to any

object.

SystemExit Raised by the sys.exit() function.

StandardError Base class for all built-in exceptions except StopIteration and

SystemExit.

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric

type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisonError Raised when division or modulo by zero takes place for all

numeric types.

https://www.tutorialspoint.com/python/standard_exceptions.htm
https://www.tutorialspoint.com/python/assertions_in_python.htm

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 139

What is Exception?

An exception is an event, which occurs during the execution of a program that disrupts the normal

flow of the program's instructions. In general, when a Python script encounters a situation that it

cannot cope with, it raises an exception. An exception is a Python object that represents an error.

When a Python script raises an exception, it must either handle the exception immediately

otherwise it terminates and quits.

Handling an exception

If you have some suspicious code that may raise an exception, you can defend your program by

placing the suspicious code in a try: block. After the try: block, include an except: statement,

followed by a block of code which handles the problem as elegantly as possible.

Syntax

Here is simple syntax of try....except...else blocks −

try:

 You do your operations here;

except ExceptionI:

 If there is ExceptionI, then execute this block.

except ExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is useful when the try

block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.

 After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 140

 The else-block is a good place for code that does not need the try: block's protection.

Example

This example opens a file, writes content in the, file and comes out gracefully because there is no

problem at all −

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print "Error: can\'t find file or read data"

else:

 print "Written content in the file successfully"

 fh.close()

This produces the following result −

Written content in the file successfully

The except Clause with No Exceptions

You can also use the except statement with no exceptions defined as follows −

try:

 You do your operations here;

except:

 If there is any exception, then execute this block.

else:

 If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur. Using this kind of try-

except statement is not considered a good programming practice though, because it catches all

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 141

exceptions but does not make the programmer identify the root cause of the problem that may

occur.

The except Clause with Multiple Exceptions

You can also use the same except statement to handle multiple exceptions as follows −

try:

 You do your operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list,

 then execute this block.

else:

 If there is no exception then execute this block.

The try-finally Clause

You can use a finally: block along with a try: block. The finally block is a place to put any code

that must execute, whether the try-block raised an exception or not. The syntax of the try-finally

statement is this −

try:

 You do your operations here;

 Due to any exception, this may be skipped.

finally:

 This would always be executed.

You cannot use else clause as well along with a finally clause.

Example

#!/usr/bin/python

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 142

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

finally:

 print "Error: can\'t find file or read data"

If you do not have permission to open the file in writing mode, then this will produce the following

result:

Error: can't find file or read data

Same example can be written more cleanly as follows −

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 try:

 fh.write("This is my test file for exception handling!!")

 finally:

 print "Going to close the file"

 fh.close()

except IOError:

 print "Error: can\'t find file or read data"

When an exception is thrown in the try block, the execution immediately passes to

the finally block.

Raising an Exceptions

You can raise exceptions in several ways by using the raise statement. The general syntax for

the raise statement is as follows.

Syntax

raise [Exception [, args [, traceback]]]

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 143

Here, Exception is the type of exception (for example, NameError) and argument is a value for

the exception argument. The argument is optional; if not supplied, the exception argument is

None.

The final argument, traceback, is also optional (and rarely used in practice), and if present, is the

traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions that the Python core

raises are classes, with an argument that is an instance of the class. Defining new exceptions is

quite easy and can be done as follows −

def functionName(level):

 if level < 1:

 raise "Invalid level!", level

 # The code below to this would not be executed

 # if we raise the exception

Note: In order to catch an exception, an "except" clause must refer to the same exception thrown

either class object or simple string. For example, to capture above exception, we must write the

except clause as follows −

try:

 Business Logic here...

except "Invalid level!":

 Exception handling here...

else:

 Rest of the code here...

User-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard built-

in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is subclassed

from RuntimeError. This is useful when you need to display more specific information when an

exception is caught.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 144

In the try block, the user-defined exception is raised and caught in the except block. The variable

e is used to create an instance of the class Networkerror.

class Networkerror(RuntimeError):

 def __init__(self, arg):

 self.args = arg

So once you defined above class, you can raise the exception as follows −

try:

 raise Networkerror("Bad hostname")

except Networkerror,e:

 print e.args

Functions

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you can also

create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a

function in Python.

 Function blocks begin with the keyword def followed by the function name and

parentheses (()).

 Any input parameters or arguments should be placed within these parentheses. You can

also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation string

of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 145

Syntax

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order

that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):

 "This prints a passed string into this function"

 print str

 return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the

function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another

function or directly from the Python prompt. Following is the example to call printme() function

−

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 146

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

When the above code is executed, it produces the following result −

I'm first call to user defined function!

Again second call to the same function

Pass by reference vs value

All parameters (arguments) in the Python language are passed by reference. It means if you

change what a parameter refers to within a function, the change also reflects back in the calling

function. For example −

#!/usr/bin/python

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 mylist.append([1,2,3,4]);

 print "Values inside the function: ", mylist

 return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same object.

So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

Values inside the function: [1, 2, 3, 4]

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 147

Function Arguments

You can call a function by using the following types of formal arguments:

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a

syntax error as follows −

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme()

When the above code is executed, it produces the following result:

Traceback (most recent call last):

 File "test.py", line 11, in <module>

 printme();

TypeError: printme() takes exactly 1 argument (0 given)

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 148

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is

able to use the keywords provided to match the values with parameters. You can also make

keyword calls to the printme() function in the following ways −

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result −

My string

The following example gives more clear picture. Note that the order of parameters does not

matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 149

Now you can call printinfo function

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it

prints default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Name: miki

Age 35

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 150

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the

function. These arguments are called variable-length arguments and are not named in the function

definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable

arguments. This tuple remains empty if no additional arguments are specified during the function

call. Following is a simple example −

#!/usr/bin/python

Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print "Output is: "

 print arg1

 for var in vartuple:

 print var

 return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 151

10

Output is:

70

60

50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by

using the def keyword. You can use the lambda keyword to create small anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form of

an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function stack

allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works −

#!/usr/bin/python

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 152

Now you can call sum as a function

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result −

Value of total : 30

Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as

follows −

#!/usr/bin/python

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2

 print "Inside the function : ", total

 return total;

Now you can call sum function

total = sum(10, 20);

print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30

Outside the function : 30

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 153

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends

on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular

identifier. There are two basic scopes of variables in Python −

 Global variables

 Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined outside

have a global scope.

Modules

A module allows you to logically organize your Python code. Grouping related code into a

module makes the code easier to understand and use. A module is a Python object with arbitrarily

named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes and

variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file named aname.py. Here's

an example of a simple module, support.py

def print_func(par):

 print "Hello : ", par

 return

The import Statement

You can use any Python source file as a module by executing an import statement in some other

Python source file. The import has the following syntax:

import module1[, module2[,... moduleN]

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 154

When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. A search path is a list of directories that the interpreter searches before

importing a module. For example, to import the module hello.py, you need to put the following

command at the top of the script −

#!/usr/bin/python

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Zara")

When the above code is executed, it produces the following result −

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This prevents the

module execution from happening over and over again if multiple imports occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax −

from modname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the following statement −

from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just introduces

the item fibonacci from the module fib into the global symbol table of the importing module.

The from...import * Statement:

It is also possible to import all names from a module into the current namespace by using the

following import statement −

from modname import *

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 155

This provides an easy way to import all the items from a module into the current namespace;

however, this statement should be used sparingly.

Locating Modules

When you import a module, the Python interpreter searches for the module in the following

sequences −

 The current directory.

 If the module isn't found, Python then searches each directory in the shell variable

PYTHONPATH.

 If all else fails, Python checks the default path. On UNIX, this default path is normally

/usr/local/lib/python/.

Namespaces and Scoping

Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable

names (keys) and their corresponding objects (values).

A Python statement can access variables in a local namespace and in the global namespace. If a

local and a global variable have the same name, the local variable shadows the global variable.

The dir() Function

The dir() built-in function returns a sorted list of strings containing the names defined by a

module.

The list contains the names of all the modules, variables and functions that are defined in a

module. Following is a simple example −

#!/usr/bin/python

Import built-in module math

import math

content = dir(math)

print content

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 156

When the above code is executed, it produces the following result −

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan',

'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp',

'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',

'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sqrt', 'tan', 'tanh']

Here, the special string variable __name__ is the module's name, and __file__ is the filename

from which the module was loaded.

The globals() and locals() Functions −

The globals() and locals() functions can be used to return the names in the global and local

namespaces depending on the location from where they are called.

If locals() is called from within a function, it will return all the names that can be accessed locally

from that function.

If globals() is called from within a function, it will return all the names that can be accessed

globally from that function.

The return type of both these functions is dictionary. Therefore, names can be extracted using the

keys() function.

The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is

executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use

the reload() function. The reload() function imports a previously imported module again. The

syntax of the reload() function is this −

reload(module_name)

Here, module_name is the name of the module you want to reload and not the string containing

the module name. For example, to reload hello module, do the following −

reload(hello)

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 157

CLASSES AND OOP

Python has been an object-oriented language since it existed. Because of this, creating and using

classes and objects are downright easy. However, here is small introduction of Object-Oriented

Programming (OOP) to bring you at speed −

Overview of OOP Terminology

 Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables and

instance variables) and methods, accessed via dot notation.

 Class variable: A variable that is shared by all instances of a class. Class variables are

defined within a class but outside any of the class's methods. Class variables are not used

as frequently as instance variables are.

 Data member: A class variable or instance variable that holds data associated with a class

and its objects.

 Function overloading: The assignment of more than one behavior to a particular function.

The operation performed varies by the types of objects or arguments involved.

 Instance variable: A variable that is defined inside a method and belongs only to the

current instance of a class.

 Inheritance: The transfer of the characteristics of a class to other classes that are derived

from it.

 Instance: An individual object of a certain class. An object obj that belongs to a class

Circle, for example, is an instance of the class Circle.

 Instantiation: The creation of an instance of a class.

 Method : A special kind of function that is defined in a class definition.

 Object: A unique instance of a data structure that's defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

 Operator overloading: The assignment of more than one function to a particular operator.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 158

Creating Classes

The class statement creates a new class definition. The name of the class immediately follows the

keyword class followed by a colon as follows −

class ClassName:

 'Optional class documentation string'

 class_suite

 The class has a documentation string, which can be accessed via ClassName.__doc__.

 The class_suite consists of all the component statements defining class members, data

attributes and functions.

Example

Following is the example of a simple Python class −

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

 The variable empCount is a class variable whose value is shared among all instances of a

this class. This can be accessed as Employee.empCount from inside the class or outside

the class.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 159

 The first method __init__() is a special method, which is called class constructor or

initialization method that Python calls when you create a new instance of this class.

 You declare other class methods like normal functions with the exception that the first

argument to each method is self. Python adds the self argument to the list for you; you do

not need to include it when you call the methods.

Creating Instance Objects

To create instances of a class, you call the class using class name and pass in whatever arguments

its __init__ method accepts.

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class variable would be

accessed using class name as follows −

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together −

#!/usr/bin/python

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 160

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

When the above code is executed, it produces the following result −

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time −

emp1.age = 7 # Add an 'age' attribute.

emp1.age = 8 # Modify 'age' attribute.

del emp1.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use the following functions −

 The getattr(obj, name[, default]) : to access the attribute of object.

 The hasattr(obj,name) : to check if an attribute exists or not.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 161

 The setattr(obj,name,value) : to set an attribute. If attribute does not exist, then it would

be created.

 The delattr(obj, name) : to delete an attribute.

hasattr(emp1, 'age') # Returns true if 'age' attribute exists

getattr(emp1, 'age') # Returns value of 'age' attribute

setattr(emp1, 'age', 8) # Set attribute 'age' at 8

delattr(empl, 'age') # Delete attribute 'age'

Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be accessed using dot operator

like any other attribute −

 __dict__: Dictionary containing the class's namespace.

 __doc__: Class documentation string or none, if undefined.

 __name__: Class name.

 __module__: Module name in which the class is defined. This attribute is "__main__" in

interactive mode.

 __bases__: A possibly empty tuple containing the base classes, in the order of their

occurrence in the base class list.

For the above class let us try to access all these attributes −

#!/usr/bin/python

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 162

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

print "Employee.__doc__:", Employee.__doc__

print "Employee.__name__:", Employee.__name__

print "Employee.__module__:", Employee.__module__

print "Employee.__bases__:", Employee.__bases__

print "Employee.__dict__:", Employee.__dict__

When the above code is executed, it produces the following result −

Employee.__doc__: Common base class for all employees

Employee.__name__: Employee

Employee.__module__: __main__

Employee.__bases__: ()

Employee.__dict__: {'__module__': '__main__', 'displayCount':

<function displayCount at 0xb7c84994>, 'empCount': 2,

'displayEmployee': <function displayEmployee at 0xb7c8441c>,

'__doc__': 'Common base class for all employees',

'__init__': <function __init__ at 0xb7c846bc>}

Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances) automatically to free the

memory space. The process by which Python periodically reclaims blocks of memory that no

longer are in use is termed Garbage Collection.

Python's garbage collector runs during program execution and is triggered when an object's

reference count reaches zero. An object's reference count changes as the number of aliases that

point to it changes.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 163

Class Inheritance

Instead of starting from scratch, you can create a class by deriving it from a preexisting class by

listing the parent class in parentheses after the new class name.

The child class inherits the attributes of its parent class, and you can use those attributes as if they

were defined in the child class. A child class can also override data members and methods from

the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of base classes to inherit

from is given after the class name −

class SubClassName (ParentClass1[, ParentClass2, ...]):

 'Optional class documentation string'

 class_suite

Example

#!/usr/bin/python

class Parent: # define parent class

 parentAttr = 100

 def __init__(self):

 print "Calling parent constructor"

 def parentMethod(self):

 print 'Calling parent method'

 def setAttr(self, attr):

 Parent.parentAttr = attr

 def getAttr(self):

 print "Parent attribute :", Parent.parentAttr

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 164

class Child(Parent): # define child class

 def __init__(self):

 print "Calling child constructor"

 def childMethod(self):

 print 'Calling child method'

c = Child() # instance of child

c.childMethod() # child calls its method

c.parentMethod() # calls parent's method

c.setAttr(200) # again call parent's method

c.getAttr() # again call parent's method

When the above code is executed, it produces the following result −

Calling child constructor

Calling child method

Calling parent method

Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows −

class A: # define your class A

.....

class B: # define your class B

.....

class C(A, B): # subclass of A and B

.....

You can use issubclass() or isinstance() functions to check a relationships of two classes and

instances.

P H P A N D P Y T H O N : Department of Information Technology - APSAC
P a g e | 165

 The issubclass(sub, sup) boolean function returns true if the given subclass sub is indeed

a subclass of the superclass sup.

 The isinstance(obj, Class) boolean function returns true if obj is an instance of

class Class or is an instance of a subclass of Class

Overriding Methods

You can always override your parent class methods. One reason for overriding parent's methods

is because you may want special or different functionality in your subclass.

Example

#!/usr/bin/python

class Parent: # define parent class

 def myMethod(self):

 print 'Calling parent method'

class Child(Parent): # define child class

 def myMethod(self):

 print 'Calling child method'

c = Child() # instance of child

c.myMethod() # child calls overridden method

When the above code is executed, it produces the following result −

Calling child method

Data Hiding

An object's attributes may or may not be visible outside the class definition. You need to name

attributes with a double underscore prefix, and those attributes then are not be directly visible to

outsiders.

